Tumor-intrinsic β-catenin signaling mediates tumor-immune avoidance
CD8⁺ T cell-inflamed melanoma shows signs of increased immune suppressive mechanisms

Spranger, STM 2013
Anti-PD-1 therapy appears to be preferentially effective in T cell-inflamed tumors

Tumeh, Nature 2014
What causes the non-T cell-inflamed tumor phenotype?
Workflow to identify oncogenic pathways differentially activated between T cell-inflamed and non-T cell-inflamed patients
49% of non-T cell-inflamed tumors were linked with active β-catenin signaling.
Experimental model system

Tamoxifen
Genetically engineered mouse tumors with active β-catenin lack T cell infiltration

IF on tumor

Flow cytometry

Red: T cells
Blue: nuclei
Is the lack of T cell infiltration caused by a lack of initial T cell priming?

Braf$^{V600E/PTEN^{-/-}}$
Braf$^{V600E/PTEN^{-/-}/CAT-STA}$

+/- LoxP-Stop-LoxP SIY
β-catenin-expressing tumors fail to prime 2C TCR Tg T cells
β-catenin-expressing tumors show reduced numbers of CD8α+ and CD103+ dendritic cells
Which signal is required for CD103+ dendritic cells to infiltrate into the tumor?
CCL4 expression is lost in β-catenin$^+$ tumors
Knockdown of ATF3 restores CCL4 expression in β-catenin$^+$ tumor cells

BP cell line from $Braf^{V600E}/PTEN^{-/-}$; BPC cell line from $Braf^{V600E}/PTEN^{-/-}/CAT-STA$
Does β-catenin-mediated lack of T cell infiltration facilitate resistance towards checkpoint inhibition?
Checkpoint blockade fails to control β-catenin-expressing tumors

Combination therapy of αCTLA-4 and αPD-L1

Analysis of tumor growth and T cell infiltration

![Graphs showing tumor growth with and without combination therapy](image_url)
Tumor-intrinsic β-catenin signaling mediates lack of T cell infiltration and resistance towards checkpoint inhibition

Spranger et al., Nature 2015
Does tumor-intrinsic β-catenin signaling mediate resistance to an existing immune response?
Experimental approach to evaluate impact of tumor-intrinsic β-catenin on effector/memory T cell efficacy
Existing antigen-specific T cell memory fails to control \(\beta \)-catenin\(^+ \) tumors expressing the shared antigen

\(\beta \)-catenin wild type \hspace{1cm} \beta \)-catenin activated \hspace{1cm} Antigen-negative
Is the lack of effector T cell recruitment due to a lack of memory re-activation?

Or in addition due to a lack of recruitment of effector T cells into the tumor microenvironment?
BPC-SIY tumor fail to recruit \textit{in vitro} activated antigen-specific 2C T cells
β-catenin-expressing SIY⁺ tumors fail to recruit primed antigen-specific 2C T cells
Adoptive transfer of effector 2C T cells fails to control β-catenin-expressing tumors.
Which cell type within the tumor microenvironment is required for effective effector T cell recruitment?
CD103+ dendritic cells are the predominant source of CXCR3 chemokine ligands
Are dendritic cells within the tumor microenvironment sufficient for the recruitment of effector T cells?
Reconstitution of BPC-SIY tumors with FLT3-L derived DC restored the capability of tumors to recruit T cells.
Reconstitution of β-catenin-expressing SIY$^+$ tumors with FLT3L-DCs restores effector T cell recruitment
Tumor cell-intrinsic β-catenin mediates immune exclusion against pre-existing antigen-specific T cell memory.
Acknowledgments

Gajewski Lab
Tom Gajewski

Ayelet Sivan
Blake Flood
Brendan Horton
Daisy Dai
Jason Williams
Kyle Cron
Leticia Corrales
Michael Leung
Peter Alexieff
Randy Sweis
Vyara Matson
Yuanyuan Zha

CRI
Jorge Andrade
Riyue Bao
Ainhoa Arina
Fotini Gounari

Melanoma Research Alliance
Cancer Research Institute
DFG Postdoctoral Fellowship
Irvington Postdoctoral fellowship
Injection of Flt-3L BMDCs can “reverse” the non-inflamed phenotype

- 17 days
- Twice per week
- Analysis of T cell and DC infiltration

Flt-3L DC activated with poly(I:C)
Effector T cells isolated from BP tumors express high levels of CXCR3
Increased tumor control is accompanied by increased peripheral and intra-tumoral immune response

Response to secondary tumor
Increased tumor control is accompanied by increased peripheral and intra-tumoral immune response.

Response to secondary tumor