The role of SUPT6H in gliomagenesis

23/01/2015
PragueONCO2015

Rikke Darling Rasmussen
Brain Tumor Biology

Danish Cancer Society Research Center
Genome Integrity
Copenhagen, Denmark
Gliomas

- 3000 cases primary CNS tumors/year
- 90% die within 2-5 years post diagnosis
- the most malignant variant - GBM

<table>
<thead>
<tr>
<th></th>
<th>Pilocytic Astrocytoma (WHO grade I)</th>
<th>Diffuse Astrocytoma (WHO grade II)</th>
<th>Anaplastic Astrocytoma (WHO grade III)</th>
<th>Glioblastoma a.k.a. Glioblastoma Multiforme (WHO grade IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Onset</td>
<td>First two decades of life</td>
<td>30 to 40 yrs</td>
<td>Early 40s</td>
<td>Mid 50–60s</td>
</tr>
<tr>
<td>Typical Location</td>
<td>Throughout the neuraxis. Optic pathway tumors are frequent</td>
<td>Cerebral hemispheres. Pons/brainstem, esp. in children</td>
<td>Cerebral hemispheres</td>
<td>Cerebral hemispheres</td>
</tr>
<tr>
<td>Average Survival</td>
<td>Years to decades</td>
<td>Five years</td>
<td>Two to five years</td>
<td>Fourteen months</td>
</tr>
</tbody>
</table>

Angiogenesis

Neuroglia, 2012
Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signaling in human gliomas

Bartkova*, Hamerlik*, Oncogene, 2010; *equal contribution
Cancer stem cells and radioresistance in GBM

Bao et al. 2006 Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.
siRNA library: against 360 genes
3 validated independent siRNA performed as pooled siRNA screen

CD133-positive glioma-derived cancer stem cells (GSCs):

- search for genes whose knock-down would result in changes:
 - proliferation rates (**EdU** pulse labeling)
 - spontaneous DNA damage (**γH2AX**)

i.e. candidate genes important for GSCs maintenance, repair efficiency and self-renewal

Readout: ScanR microscopy screening station
Experimental setup

- Papain dissociation

 →

 CD133+

 →

 Confirmation of stem cell phenotype by qPCR (GFAP, Sox2, Oct, Musashi, CD133)

 →

 CD133−

 →

 Read-out on ScanR
Hit from siRNA screen: **SUPT6H** (suppressor of Ty 6 homolog)

- Encodes the protein Spt6
- Histone chaperone interacting with H3, H4 and H2b
- Involved in both assembly and disassembly of the DNA
- Spt6 regulates chromatin structure and gene expression

- **Involved in the differentiation of stem cells** (AH Wang et al., The EMBO journal, 2013, Kedes et al., J Cell Physiol, 2003)
- **Spt6 is required for proper activation of Notch signaling pathway genes** shown in a zebrafish model (F.O. Kok et al., Developmental Biology, 2007)

HtH, helix-turn-helix domain, binds to double-stranded DNA;
YqgFc, predicted to be a resolvase or ribonuclease, but in Spt6, catalytic residues are exchanged, thus probably not active; HhH, triple-helix-domain, binding to double-stranded DNA;
S1, RNA-binding domain
SH2-N, SH2-C, tandem SH2 domains, binds phosphorylated Ser residues
Spt6 is expressed in primary GBM

![Image of protein expression](image1)

T1	**T2**	**T3**
Spt6 | ![Spt6 expression](image2) | ![Spt6 expression](image3)
LaminB | ![LaminB expression](image4) | ![LaminB expression](image5)

Con	**si34**	**si35**	**si36**
Spt6 | ![Spt6 expression](image6) | ![Spt6 expression](image7) | ![Spt6 expression](image8)
TUB | ![TUB expression](image9) | ![TUB expression](image10)

DAPI ![DAPI staining](image11)

Emb-5 ![Emb-5 staining](image12)
GBM cells show decreased proliferation rates and increased DNA damage after Spt6 knock-down
Knock-down of Spt6 leads to activation of the ATM signaling pathway and slows down the repair of damaged DNA.
SUPT6H knock-down leads to decreased cell viability

Annexin V positive cells

- si36: 70.6%
- si35: 56.5%
- si34: 55.6%
- siCon: 14.5%

Relative viability over time (days)

- s36
- s35
- s34
- con

Caspase 3
C-Caspase 3
TUB
SUPT6H knock-down arrests GBM cells in G1 and G2-M phase of the cell cycle.
Conclusion and working model

Spt6 KD

DNA damage and activation of DDR

Proliferation

- Cell cycle arrest and eventually apoptosis
Thank you for your attention

Acknowledgement

Brain Tumor Biology
Petra Hamerlik
Madhavsai Kirit Gajjar
Elisabeth Anne Adanma Obara
Julie la Cour Karottki
Kamilla Ellermann Jensen

Genome Integrity Group
Jiri Bartek
Jiri Bartek Jr.