Systemic Therapy Update in the Management of Bladder Cancer

By

Dr. Hussein M. Khaled

Professor Emeritus of Medical Oncology

Cairo University

Member of UICC Board of Directors (2016-2018)
Systemic Therapy Update in the Management of Bladder Cancer

- Introduction
- Neoadjuvant systemic therapy
- Adjuvant systemic therapy
- Multimodality therapy and organ preservation
- Treatment of advanced/metastatic disease
Estimated age-standardized incidence rates (World) in 2018, worldwide, males, all ages

- Lung
- Prostate
- Colorectum
- Stomach
- Liver
- Bladder
- Oesophagus
- Non-Hodgkin lymphoma
- Leukaemia
- Kidney

Data source: GLOBOCAN 2018
Graph production: Global Cancer Observatory (http://gco.iarc.fr)

ASR (World) per 100,000
Public-domain database

- Coverage 21% of Egypt population
- Covering upper, middle and lower Egypt
Estimated number of new cases in 2018, Egypt, both sexes, all ages

<table>
<thead>
<tr>
<th>ICD</th>
<th>Top 10 cancers</th>
<th>Number</th>
<th>Crude Rate*</th>
<th>ASR (World)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>C00-97</td>
<td>All cancers</td>
<td>128,892</td>
<td>129.7</td>
<td>156.9</td>
</tr>
<tr>
<td>C22</td>
<td>Liver</td>
<td>25,399</td>
<td>25.6</td>
<td>32.2</td>
</tr>
<tr>
<td>C50</td>
<td>Breast</td>
<td>23,081</td>
<td>47.0</td>
<td>52.4</td>
</tr>
<tr>
<td>C82-86, C96</td>
<td>Non-Hodgkin lymphoma</td>
<td>9,854</td>
<td>9.9</td>
<td>11.8</td>
</tr>
<tr>
<td>C67</td>
<td>Bladder</td>
<td>9,239</td>
<td>9.3</td>
<td>11.9</td>
</tr>
<tr>
<td>C33-34</td>
<td>Lung</td>
<td>6,045</td>
<td>6.1</td>
<td>7.6</td>
</tr>
<tr>
<td>C18-21</td>
<td>Colorectum</td>
<td>5,393</td>
<td>5.4</td>
<td>6.5</td>
</tr>
<tr>
<td>C70-72</td>
<td>Brain, nervous system</td>
<td>4,555</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td>C91-95</td>
<td>Leukaemia</td>
<td>4,314</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>C61</td>
<td>Prostate</td>
<td>3,109</td>
<td>6.2</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Estimated crude incidence rates in 2018, Egypt, females, all ages

- Breast
- Liver
- Non-Hodgkin lymphoma
- Colorectum
- Ovary
- Bladder
- Brain, nervous system
- Thyroid
- Leukaemia
- Corpus uteri

Data source: GLOBOCAN 2018
Graph production: Global Cancer Observatory (http://gco.iarc.fr)

6th
Disease Spectrum

Histological type

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urothelial carcinoma</td>
<td>90-95%</td>
</tr>
<tr>
<td>Squamous-cell carcinoma</td>
<td>3%</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>2%</td>
</tr>
<tr>
<td>Small-cell carcinoma</td>
<td><1%</td>
</tr>
</tbody>
</table>

Bladder Cancer

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial</td>
<td>pTa, pTis, pT1</td>
</tr>
<tr>
<td>Muscle-invasive</td>
<td>pT2, pT3, pT4</td>
</tr>
<tr>
<td>Metastatic</td>
<td>N+, M+</td>
</tr>
</tbody>
</table>

Stage at Diagnosis/5-yrs Survival

<table>
<thead>
<tr>
<th>Stage at Diagnosis</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>74% confined to the bladder</td>
<td>93.7%</td>
</tr>
<tr>
<td>19% regional disease</td>
<td>46%</td>
</tr>
<tr>
<td>3% distant metastasis</td>
<td>6.2%</td>
</tr>
</tbody>
</table>
Systemic therapy (neoadjuvant or adjuvant)

Multimodal therapy

Surgery: Radical cystectomy, urinary diversion, lymphadenectomy

Systemic therapy

+/− Palliative RTH

Non-muscle invasive: 70%
Muscle invasive: 25%
Metastatic: 5%

Disease Spectrum
Urothelial Tumours
Overview of Treatment Options

Transurethral resection (TUR)
Intravesical instillations: immunotherapy or chemotherapy
Systemic therapy

Evolution of Systemic Therapy for Urothelial Cancer

- **Publication**
 - Standard MVAC 1989
 - Docetaxel 1997
 - GC 2000
 - Paclitaxel 2002

- **Agency Action**
 - Doxorubicin FDA approved 1974
 - Cisplatin FDA approved 1978
 - Gemcitabine EMA approved 2008
 - Vinflunine EMA approved 2009
 - Pembrolizumab 1st-line cis ineligible May 2017
 - Pembrolizumab 2nd line May 2017
 - Nivolumab 2nd line Feb 2017
 - Atezolizumab 1st-line cis ineligible Apr 2017
 - Durvalumab 2nd line May 2017
 - Avelumab 2nd line May 2017
 - Pembrolizumab 2nd line May 2017
 - Atezolizumab FDA approved 2016
 - Pembrolizumab 2nd line May 2017

- **Timeline**
 - 1974-2017
 - Feb 2017: Nivolumab 2nd line
 - Mar 2017: Atezolizumab 1st-line cis ineligible
 - Apr 2017: Durvalumab 2nd line
 - May 2017: Avelumab 2nd line
 - Feb 2018: Pembrolizumab 2nd line

- **Notes**
 - FDA approved:
 - Cisplatin
 - Doxorubicin
 - Docetaxel
 - Gemcitabine
 - Vinflunine
 - Pembrolizumab
 - EMA approved:
 - Vinflunine

- **References**
 - Doxorubicin FDA approved
 - Cisplatin FDA approved
 - Gemcitabine EMA approved
 - Vinflunine EMA approved

- **Additional Information**
 - Evolution of Systemic Therapy for Urothelial Cancer

Do not duplicate or distribute without permission from the author or copyright holder.
Radical cystectomy is the gold standard for treatment of invasive bladder cancer.

Treatment of muscle invasive bladder cancer

Urinary Diversion after Radical Cystectomy

- Orthotopic bladder substitute
 - Both in men and women
 - Except for urethral tumor/positive urethral margin (EG B)

- Fully informed patient about benefits and risks of each type of diversion (EG B)
 - Final decision based on broad consent between patient and treating surgeon

Systemic Therapy Update in the Management of Bladder Cancer

- Introduction
- Neoadjuvant systemic therapy
- Adjuvant systemic therapy
- Multimodality therapy and organ preservation
- Treatment of advanced/metastatic disease
Indication of Systemic Therapy in M1 Bladder Cancer

- Local Disease
- M1 Bladder Cancer
cT2-T4a and N0 and M0

(RC)
Prior to Radical Local Treatment

Neoadjuvant
Neoadjuvant Cisplatin-based Chemotherapy improves survival in MIBC

Neoadjuvant Cisplatin-based Chemotherapy improves survival in MIBC

10-yr OS:
CMV = 36%
No CMV = 30%

P value: 0.03

Neoadjuvant Cisplatin-based Chemotherapy improves survival in MIBC

Fig. 2. Overall survival curve (platinum based combination chemotherapy trials only).
Efforts to decrease toxicity and improve outcome with MVAC

- GC
- HD MVAC
- DD MVAC
- Accelerated MVAC
Efforts to decrease toxicity with MVAC (GC vs MVAC)

Von der Masse et al., JCO, 2000, 18: 3068
Von der Masse et al., JCO, 2005, 21: 4602
Pathologic complete response as a surrogate for survival

Patients who achieved pCR in the primary tumour and the lymph nodes presented an RR for OS of 0.45 (95% confidence interval [CI], 0.36–0.56; p < 0.00001), Petrelli F et al, Eur Urol, 2014
Neoadjuvant Chemotherapy for Bladder Cancer

Evidence
Multiple prospective randomized trials and meta-analyses demonstrate survival advantage from NAC for all eligible patients with MIBC.

Gap
1. Only ≈40% of patients with major response appear to benefit from NAC
2. NAC is not widely used in most parts of the world

Solution
If we can identify who is likely to respond to NAC and avoid NAC in likely non-responders, we will be able to optimize delivery and increase uptake.
Molecular Predictors of Response to Neoadjuvant Chemotherapy

- Molecular Subtypes
- COXEN Model
- Genomic Alterations
Molecular Predictors of Response to Neoadjuvant Chemotherapy

Molecular Subtypes
Molecular subtypes: basal vs. luminal

Visual Art: © 2014 The University of Texas MD Anderson Cancer Center

David McConkey
Basal tumors most sensitive to neoadjuvant chemo

(non-NAC dataset (n=476) (overall survival) NAC dataset (n=269)

GSC: Seiler, Eur Urol, 2017
UNC: Daumrauer, PNAS, 2014
MDA: Choi, Cancer Cell, 2014

Seiler et al. Eur Urol 2017
Molecular Predictors of Response to Neoadjuvant Chemotherapy

Molecular Subtypes

COXEN Model
SWOG S1314 – “Coxen” Clinical Trial

Biomarker validation and biomarker discovery

Selection Criteria SWOG 8710 (T2-T4a N0M0, cisplatin eligible)

Tumor Sample TURBT

Randomize to chemo

Gem-Cis

MVAC

Cystectomy

Cystectomy Pathology

Validation

Ability of COXEN model to predict pT0 or ≤pT1

Collection

Tissue, blood, urine

Molecular Analysis

Gene expression

Sequencing

microRNA

SNP

Discovery

Collection

Tissue (>P0), blood, urine

Molecular Analysis

Gene expression

Sequencing

microRNA

SNP

Tom Flaig

Dan Theodorescu
Molecular Predictors of Response to Neoadjuvant Chemotherapy

- Molecular Subtypes
- COXEN Model
- Genomic Alterations
ERCC2 Mutations: Validation

![Graph showing overall survival for ERCC2 mutation and no ERCC2 mutation cohorts.]

No. at risk by time
No ERCC2 mutation 38
ERCC2 mutation 10

Overall Survival, d

Proportion Surviving

0.0 0.2 0.4 0.6 0.8 1.0
0 500 1000 1500

P = .03

Cancer Discovery October 2014

Liu et al JAMA Oncol 2016
Mutations in ATM, RB1, FANCC

Overall survival

A
- Progression-free survival (%)
- Discovery (AMVAC)
- \(p = 0.0085 \)
- ATM/RB1/FANCC wt
- ATM/RB1/FANCC mut
- \# PTs at risk
 - wt: 21, 16, 12, 6, 2
- Time (mo)

B
- Progression-free survival (%)
- Validation (DDGC)
- \(p = 0.102 \)
- ATM/RB1/FANCC wt
- ATM/RB1/FANCC mut
- \# PTs at risk
 - wt: 15, 9, 4, 0
- Time (mo)

Discovery: dose-dense MVAC

Validation: dose-dense Gem-Cis

Plimack et al Eur Urol 2015
Where do these markers leave us?

- Basal subtype of bladder cancer appears to benefit most from neo-adjuvant chemotherapy.
- COXEN model predicts response to neoadjuvant chemo in individual patient.
- Alterations in DNA repair genes may allow for enrichment of likely responders.
- All of this needs to be validated in trials.
Neoadjuvant Therapy for MIBC

Eligible for cisplatin-based therapy

Gemcitabine + Cisplatin or ddMVAC → Cystectomy

Ineligible for cisplatin-based therapy

Cystectomy
Integrating CPI into Neoadjuvant Therapy

- Single Agent
- CPI Doublets
- Chemo + CPI
ABACUS and PURE-01: Phase II Trials of Neoadjuvant Checkpoint Inhibition Muscle Invasive Bladder Cancer

ABACUS:
Atezolizumab
1200 mg Q3W x 2 doses
(N = 95)¹

PURE-01:
Pembrolizumab
200 mg Q3W x 3 doses
(N = 50)²

Cystectomy

pCR Rate With PD-1/PD-L1 Blockade Similar to Cisplatin-Based NAC

pCR Rate With PD-1/PD-L1 Blockade Similar to Cisplatin-Based NAC

ABACUS: Survival Based on pCR Status Following Neoadjuvant Atezolizumab

Does achieving pCR with neoadjuvant PD-1/PD-L1 blockade correlate with improved long-term outcomes?

KEYNOTE-905: Pembrolizumab + Cystectomy vs Cystectomy in Cisplatin-Ineligible Patients With MIBC

- Multicenter, randomized phase III trial

 Multicenter, randomized phase III trial

 PD-L1 (CPS ≥ 10% or < 10%), disease stage, and geographic region

 Cisplatin-ineligible pts with stage T2-T4aN0M0 MIBC; predominant urothelial histology; ECOG PS 0-2; no previous systemic therapy for MIBC (Planned N = 610)

 Pembrolizumab

 200 mg Q3W for 3 cycles

 Cystectomy + PLND

 Pembrolizumab

 200 mg Q3W for up to 14 cycles

 Cystectomy + PLND

 Best supportive care (adjuvant CT if indicated)

 Crossover to pembrolizumab allowed at PD

- Primary endpoint: pCR and EFS (in PD-L1 CPS ≥ 10% and ITT populations)

- Key secondary endpoint: OS (in PD-L1 CPS ≥ 10% and ITT populations)

Early Phase Studies of Neoadjuvant Doublet CPI Therapy in MIBC

NCT02812420
Durvalumab + treemelimumab x 2\(^1\)

NABUCCO
Ipilimumab + nivolumab x 3\(^2\)

Cystectomy

Summary: Neoadjuvant Systemic Therapy of Bladder Cancer

<table>
<thead>
<tr>
<th>Neoadjuvant</th>
<th>Preferred</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin eligible</td>
<td>Cis Gem or DD MVAC</td>
<td>Checkpoint inhibitor on a clinical trial</td>
</tr>
<tr>
<td>Cisplatin ineligible</td>
<td>Upfront surgery, then consider adjuvant trial</td>
<td>Checkpoint inhibitor on a clinical trial</td>
</tr>
</tbody>
</table>

Consider testing for PD-L1 using the appropriate companion diagnostic and limiting treatment to those who are PD-L1 positive
Systemic Therapy Update in the Management of Bladder Cancer

- Introduction
- Neoadjuvant systemic therapy
- Adjuvant systemic therapy
- Multimodality therapy and organ preservation
- Treatment of advanced/metastatic disease
Indication of Systemic Therapy in MI Bladder Cancer

- Local Disease
- MI Bladder Cancer
 - cT2-T4a and N0 and M0

Radical Cystectomy

After Radical Local Treatment

Adjuvant
Guidelines

<table>
<thead>
<tr>
<th>EAU</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer adjuvant cisplatin-based combination chemotherapy to patients with pT3/4 and/or pN+ disease if no neoadjuvant chemotherapy has been given.</td>
<td>C</td>
</tr>
</tbody>
</table>

Flowchart

- **ESMO**
 - Muscle Invasive
 - Neoadjuvant Chemotherapy
 - Radical Cystectomy with Lymphadenectomy
 - Further Adjuvant Chemotherapy (limited data)
 - Adjuvant Chemotherapy (if no neoadjuvant)
 - Every three months follow up (see text)
Adjuvant Chemotherapy

DFS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skinner 1991</td>
<td>-0.3147</td>
<td>0.2247</td>
<td>12.7%</td>
<td>0.73 [0.47, 1.13]</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Studer 1994</td>
<td>0.0198</td>
<td>0.288</td>
<td>10.5%</td>
<td>1.02 [0.58, 1.79]</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>Freinha 1996</td>
<td>-0.7765</td>
<td>0.3537</td>
<td>8.7%</td>
<td>0.46 [0.23, 0.92]</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>Bono 1997</td>
<td>-0.2877</td>
<td>0.3081</td>
<td>9.9%</td>
<td>0.75 [0.41, 1.37]</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Lehmann 2006</td>
<td>-1.0498</td>
<td>0.3393</td>
<td>9.0%</td>
<td>0.35 [0.18, 0.68]</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Paz-Ares 2010</td>
<td>-0.9676</td>
<td>0.2136</td>
<td>13.1%</td>
<td>0.38 [0.25, 0.58]</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Stadler 2011</td>
<td>-0.0202</td>
<td>0.4086</td>
<td>7.3%</td>
<td>0.98 [0.44, 2.18]</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Cognetti 2012</td>
<td>0.077</td>
<td>0.1998</td>
<td>13.6%</td>
<td>1.08 [0.73, 1.60]</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Stemberg 2015</td>
<td>-0.6162</td>
<td>0.1531</td>
<td>15.2%</td>
<td>0.54 [0.40, 0.73]</td>
<td>2015</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI)

- Heterogeneity: Tau² = 0.11; Chi² = 22.39, df = 8 (P = 0.004); I² = 64%
- Test for overall effect: Z = 3.08 (P = 0.002)

OS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skinner 1991</td>
<td>-0.2877</td>
<td>0.2727</td>
<td>13.5%</td>
<td>0.75 [0.48, 1.17]</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Studer 1994</td>
<td>0.0198</td>
<td>0.2969</td>
<td>7.9%</td>
<td>1.02 [0.57, 1.83]</td>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>Freinha 1996</td>
<td>-0.2485</td>
<td>0.3945</td>
<td>4.5%</td>
<td>0.78 [0.36, 1.69]</td>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>Bono 1997</td>
<td>-0.4308</td>
<td>0.3306</td>
<td>6.4%</td>
<td>0.65 [0.34, 1.24]</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Otto 2001</td>
<td>-0.1985</td>
<td>0.2732</td>
<td>9.3%</td>
<td>0.82 [0.48, 1.40]</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Lehmann 2006</td>
<td>-0.5821</td>
<td>0.3108</td>
<td>7.2%</td>
<td>0.57 [0.31, 1.05]</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Paz-Ares 2010</td>
<td>-0.9676</td>
<td>0.2789</td>
<td>9.0%</td>
<td>0.38 [0.22, 0.66]</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Stadler 2011</td>
<td>0.1044</td>
<td>0.4607</td>
<td>3.3%</td>
<td>1.11 [0.45, 2.74]</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Cognetti 2012</td>
<td>0.2546</td>
<td>0.2189</td>
<td>14.6%</td>
<td>1.29 [0.84, 1.98]</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Stemberg 2015</td>
<td>-0.2485</td>
<td>0.1691</td>
<td>24.4%</td>
<td>0.78 [0.56, 1.09]</td>
<td>2015</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI)

- Heterogeneity: Chi² = 14.71, df = 9 (P = 0.10); I² = 39%
- Test for overall effect: Z = 2.90 (P = 0.004)

Kim HS et al, 2017, Oncotarget, 8 (46):81204-81214
Systemic Therapy Update
in the Management of
Bladder Cancer

- Introduction
- Neoadjuvant systemic therapy
- Adjuvant systemic therapy
- Multimodality therapy and organ preservation
- Treatment of advanced/metastatic disease
Indication of Systemic Therapy in MI Bladder Cancer

- Local Disease
- MI Bladder Cancer
 - cT2-T4a and N0 and M0

Radical Radiotherapy

With Radical Local Treatment
 - Concurrent
Is it possible to conserve the bladder?
Organ preservation therapy

- Indications:
 - Pts refusing Sx
 - Pts unfit for Sx

- Protocol utilize:
 - Tri-modality combination of TURBT plus radiotherapy and chemotherapy.
Radiotherapy with or without Chemotherapy in Muscle-Invasive Bladder Cancer

RT: 55 Gy / 20 # or 64 Gy / 32 #
ChT: Mitomycin / 5FU

458 patients
CYSTECTOMY RATE = 10%

James et al. NEJM 2012
Typical schema for bladder CMT

1. TURBT
2. XRT (40Gy) + Concomitant Chemotherapy
3. Cystoscopic response evaluation
 - CR
 - Non-CR

 - Consolidation Chemo-radiation (64Gy)
 - Frequent cystoscopy

 - Radical cystectomy
Multimodality Treatment for MIBC

<table>
<thead>
<tr>
<th>Series (Ref.)</th>
<th>Multimodality Therapy Used</th>
<th>No. of Patients</th>
<th>5-Year Overall Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 8512, 1993 (74)</td>
<td>External-beam radiation with cisplatin</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>RTOG 8802, 1996 (75)</td>
<td>TURBT, MCV, external-beam radiation with cisplatin</td>
<td>91</td>
<td>51</td>
</tr>
<tr>
<td>RTOG 8903, 1998 (76)</td>
<td>TURBT with or without MCV, external-beam radiation with cisplatin</td>
<td>123</td>
<td>49</td>
</tr>
<tr>
<td>U. Paris, 1997 (77)</td>
<td>TURBT, 5-FU, external-beam radiation with cisplatin</td>
<td>120</td>
<td>63</td>
</tr>
<tr>
<td>Erlangen, 2002 (78)</td>
<td>TURBT, external-beam radiation, cisplatin, carboplatin, or cisplatin and 5-FU</td>
<td>415 (cisplatin, 82; carboplatin, 61; 5-FU/cisplatin, 87)</td>
<td>50</td>
</tr>
<tr>
<td>RTOG 9906 (79)</td>
<td>TURBT, TAX plus CP plus XRT; adj. CP plus GEM</td>
<td>80</td>
<td>56</td>
</tr>
<tr>
<td>MGH, 2009 (80)</td>
<td>TURBT, external beam radiation and cisplatin with or without 5-FU or TAX; neoadj. or adj. chemotherapy</td>
<td>348</td>
<td>52</td>
</tr>
</tbody>
</table>
Pooled analysis (N = 468) of long-term outcomes from RTOG studies of combined-modality therapy for muscle-invasive bladder cancer

- Phase II: RTOG 8802, 9506, 9706, 9906, and 0233
- Phase III: RTOG 8903

Pooled Analysis of Long-term Outcomes in MIBC After Bladder-Preserving CMT

- Long-term outcomes with bladder-preserving CMT comparable to outcomes reported for previous single-institution series
- Decreased OS, DSS associated with higher clinical stage
- Improved DSS associated with complete response to CMT

<table>
<thead>
<tr>
<th>Clinical Stage, %</th>
<th>OS (P = .002)</th>
<th>DSS (P = .05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 Yr</td>
<td>10 Yr</td>
</tr>
<tr>
<td>T2</td>
<td>62</td>
<td>41</td>
</tr>
<tr>
<td>T3/T4</td>
<td>49</td>
<td>30</td>
</tr>
</tbody>
</table>

Guidelines for Multimodality Treatment
Organ Preservation Therapy (cystectomy ineligible, patient preference)

TURBT (should aim for complete)

Combined chemoradiotherapy 40 Gy

Combined chemoradiotherapy Total dose 55-64 Gy

Radiotherapy alone

Imaging + TURBT evaluation

Salvage cystectomy if persisting tumour

Complete Radiotherapy if complete response (CR)

Surveillance Cystoscopic evaluation (3 months) with TUR bladder biopsy (every 6 months)
NCCN Guidelines Version 1.2020
Muscle Invasive Bladder Cancer

CLINICAL ADDITIONAL WORKUP

- Abdominal/pelvic CT or MRI if not previously done
- Chest imaging
- Bone scan if clinical suspicion or symptoms of bone metastases

STAGING

- Stage II (cT2, N0)

PRIMARY TREATMENT

- Neoadjuvant cisplatin-based combination chemotherapy followed by radical cystectomy (category 1)
- Neoadjuvant cisplatin-based combination chemotherapy followed by partial cystectomy (highly selected patients with solitary lesion in a suitable location; no Tis)

Cystectomy candidates

- Cystectomy alone for those not eligible to receive cisplatin-based chemotherapy
- Concurrent chemoradiotherapy (category 1)

Non-cystectomy candidates

- See BL-6

ADJUVANT TREATMENT

- Based on pathologic risk (pT3-4 or positive nodes or positive margins), consider adjuvant cisplatin-based chemotherapy or consider adjuvant RT (category 2B) if no neoadjuvant treatment given

- See Follow-up (BL-E)

- No tumor → Observation
- Tumor → Surgical consolidation or treat as metastatic disease (BL-10)

- Reassessment tumor status 2-3 months after full treatment
Which Chemotherapy to give?

Chemotherapy regimens

- Cisplatin with 5-fluorouracil (RTOG 0233; RTOG 9506)
- Paclitaxel with cisplatin (RTOG 9906)
- Cisplatin alone 100 mg/m² q 2 weeks x3
- Weekly gemcitabine 75-100 mg/m²
- Twice weekly gemcitabine 27 mg/m² (RTOG 0712)
Organ Preservation Therapy

- Reasonable alternative
- Contemporary treatment involves:
 - Maximal TURBT
 - Concomitant chemoRT
- Patient selection important
 - Visibly complete TURBT
 - Tumor <5 cm
 - No or minimal Tis
 - No hydronephrosis
 - No evidence of nodal disease
 - Adequate bladder capacity and function
Systemic Therapy Update in the Management of Bladder Cancer

- Introduction
- Neoadjuvant systemic therapy
- Adjuvant systemic therapy
- Multimodality therapy and organ preservation
- Treatment of advanced/metastatic disease
EAU–ESMO consensus statements on the management of advanced and variant bladder cancer—an international collaborative multi-stakeholder effort: under the auspices of the EAU and ESMO Guidelines Committees†

<table>
<thead>
<tr>
<th>Speciality</th>
<th>Round 1, N</th>
<th>Round 2, N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urology</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>Oncology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Oncology</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Radiation Oncology</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pathology</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Radiology</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Specialist nurse</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Oncology</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>97</td>
</tr>
</tbody>
</table>
Table 12. Consensus meeting statements regarding ICIs in urothelial bladder cancer

<table>
<thead>
<tr>
<th>Proposed statements</th>
<th>Level of agreement</th>
<th>N</th>
<th>Consensus achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pseudo-progression has not been demonstrated in urothelial cancer</td>
<td>Disagree (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. In contrast to the first-line setting, the PD-L1 biomarker is not useful for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>selecting patients for immunotherapy in platinum-refractory metastatic urothelial</td>
<td>Equivocal (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Carboplatin-based chemotherapy remains a viable first-line treatment option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in cisplatin-ineligible, PD-L1-positive patients with metastatic urothelial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carcinoma until data from randomised phase III trials of ICIs are available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cisplatin-ineligible, immunotherapy-refractory patients with metastatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>urothelial carcinoma should be considered for chemotherapy instead of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequencing of immunotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	Agree (%)		
	89	28	Yes
	81	28	Yes
	87	29	Yes
	81	27	Yes
PRINCIPLES OF SYSTEMIC THERAPY

Second-line systemic therapy for locally advanced or metastatic disease (Stage IV) (post-platinum)\(^c\)

<table>
<thead>
<tr>
<th>Preferred regimen</th>
<th>Other recommended regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pembrolizumab (category 1)(^{18})</td>
<td>• Paclitaxel(^{26}) or docetaxel(^{27})</td>
</tr>
<tr>
<td>• Atezolizumab(^{19,20})</td>
<td>• Gemcitabine(^{14})</td>
</tr>
<tr>
<td>• Nivolumab(^{21})</td>
<td></td>
</tr>
<tr>
<td>• Durvalumab(^{22})</td>
<td></td>
</tr>
<tr>
<td>• Avelumab(^{23,24})</td>
<td></td>
</tr>
<tr>
<td>• Erdafitinib(^{d,25})</td>
<td></td>
</tr>
</tbody>
</table>

Alternative preferred regimens

<table>
<thead>
<tr>
<th>Preferred regimen</th>
<th>Other recommended regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Immune checkpoint inhibitor</td>
<td>Useful in certain circumstances based on prior medical therapy</td>
</tr>
<tr>
<td>› Atezolizumab(^{19,20})</td>
<td>• Ifosfamide, doxorubicin, and gemcitabine(^{16})</td>
</tr>
<tr>
<td>› Nivolumab(^{21})</td>
<td>• Gemcitabine and paclitaxel(^{15})</td>
</tr>
<tr>
<td>› Durvalumab(^{22})</td>
<td>• Gemcitabine and cisplatin(^{4})</td>
</tr>
<tr>
<td>› Avelumab(^{23,24})</td>
<td>• DDMVAC with growth factor support(^{2})</td>
</tr>
<tr>
<td>• Erdafitinib(^{d,25})</td>
<td></td>
</tr>
</tbody>
</table>

Second-line systemic therapy for locally advanced or metastatic disease (Stage IV) (post-checkpoint inhibitor)

<table>
<thead>
<tr>
<th>Preferred regimen for cisplatin ineligible, chemotherapy naïve</th>
<th>Other recommended regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gemcitabine/carboplatin</td>
<td>• Erdafitinib(^{d,25})</td>
</tr>
<tr>
<td></td>
<td>• Paclitaxel or docetaxel(^{27})</td>
</tr>
<tr>
<td></td>
<td>• Gemcitabine(^{14})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preferred regimens for cisplatin eligible, chemotherapy naïve</th>
<th>Useful in certain circumstances based on prior medical therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gemcitabine and cisplatin(^{4})</td>
<td>• Ifosfamide, doxorubicin, and gemcitabine(^{16})</td>
</tr>
<tr>
<td>• DDMVAC with growth factor support(^{2})</td>
<td>• Gemcitabine and paclitaxel(^{15})</td>
</tr>
</tbody>
</table>
Some Future and ongoing clinical trials
Key first-line Phase III trials of anti-PD-1/PD-L1 antibodies in urothelial cancer

NCT02807636 (IMvigor130): N=1,200
- First-line cisplatin-ineligible, locally advanced/metastatic
- ECOG PS ≤2

Co-primary endpoints: PFS, OS and safety

NCT02516241 (DANUBE): N=1,005
- First-line unresectable stage IV
- Eligible/ineligible for cisplatin-based chemotherapy

Co-primary endpoints: PFS and OS

NCT02853305 (KEYNOTE-361): N=990
- First-line unresectable or metastatic
- ECOG PS ≤2

Co-primary endpoints: PFS and OS

NCT03036098 (CheckMate-901): N=897
- First-line unresectable or metastatic
- ECOG PS ≤1

Co-primary endpoints: PFS and OS

- ECOG PS: Eastern Cooperative Oncology Group performance status; OS, overall survival; PD-1, programmed death-1; PD-L1, programmed death ligand-1; PFS, progression-free survival.

Metastatic UBC: New Drug Approvals 1995-20

Systemic therapy in bladder cancer

We are in a new era!

Financial Toxicity : A New Term
Thanks For Your Attention