

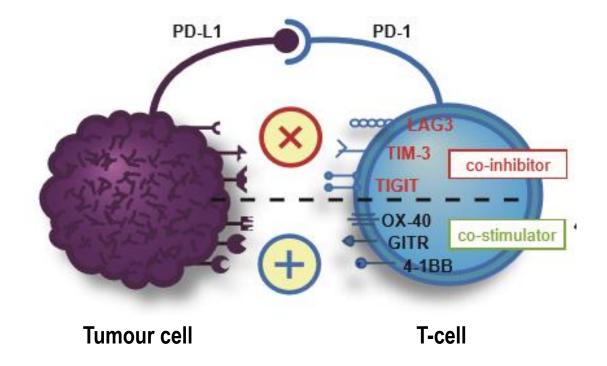
THE VALUE OF PD-L1 EXPRESSION AS PREDICTOR OF BENEFIT WITH IMMUNE CHECKPOINT INHIBITORS

Systematic review across solid tumours

Ahmad Awada, Luis Castelo-Branco, Emiliano Calvo, Irene Moreno, Karima Oualla, Ines Pires da Silva, Francesco Sclafani

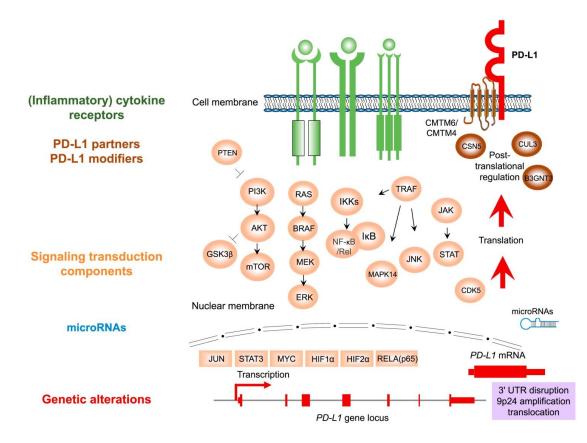
METHODOLOGY:

- Systematic review from Phase III clinical trials with Immune Checkpoint Inhibitors on different solid tumour settings and data available by PDL1 stratification
- Publications until July 2019


TOPICS

- Introduction
- Untreated NSCLC (Luis Castelo-Branco L; Ahmad Awada)
- Melanoma (Ines Pires da Silva)
- Head and Neck (Karima Oualla)
- Genito-Urinary (Irene Moreno; Emiliano Calvo)
- Gastro-Intestinal (Francesco Sclafani)

PD-L1 IS AN IMPORTANT INHIBITOR OF T-CELLS CITOTOXICITY



Castelo-Branco L, et al. Acta Med Port 2019 Apr;32(4):251-257

THERE ARE DIFFERENT REGULATORY MECHANISMS OF PD-L1 EXPRESSION AND IT IS VARIABLE OVER TIME

Reprinted from Immunity, 48 (3), Chong Sun et al, Regulation and Function of the PD-L1 Checkpoint, 434-452, copyright 2018, with permission from Elsevier.

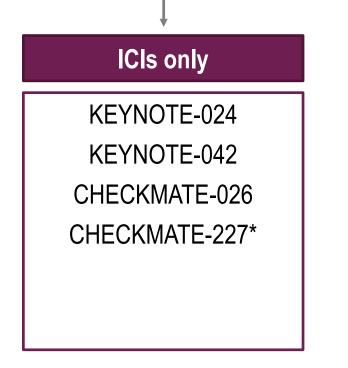
PD-L1 ASSESSMENT BY DIFFERENT TECHNIQUES

Summary of PD-L1 monoclonal antibodies and technical aspects for evaluation and agencies' approvals in NSCLC

PD-L1 mAb clone	Ab host species	Automated platform	Checkpoint inhibitor (target)	PD-L1 scoring	Definition of positivity (cutoffs)	FDA status	EMA status
22C3	Mouse	Dako (Autostainer Link 48)	Pembrolizumab (PD-1)	TC	TC ≥1% (minimum of 100 TC)	Companion	CE mark
28-8	Rabbit	Dako (Autostainer Link 48)	Nivolumab (PD-L1)	TC	TC ≥1% (minimum of 100 TC)	Complementary	CE mark
SP142	Rabbit	Ventana (BenchMark ULTRA)	Atezolizumab (PD-L1)	TC, IC	TC ≥50% or IC ≥10% (minimum of 50 TC with associated stroma)	Complementary	CE mark
SP263	Rabbit	Ventana (BenchMark ULTRA)	Duravalumab (PD-L1)	TC	TC ≥25% (minimum of 100 TC)	FDA approval only for urothelial carcinoma	CE mark for nivolumab and pembrolizumab in NSCLC and durvalumab in urothelial carcinoma
73-10	Rabbit	Dako	Avelumab (PD-L1)	TC	TC ≥1% (minimum cells not defined)	FDA approval	NA

Teixidó C et al, Ther Adv Med Oncol. 2018, Vol. 10: 1–17

THE EXPRESSION OF PDL1 IN TUMOUR CELLS COULD BE ASSOCIATED WITH THE EFFICACY OF IMMUNE CHECKPOINT INHIBITORS IN SOLID TUMOURS?


PREVIOUSLY UNTREATED METASTATIC NON-SMALL CELL LUNG CANCER (NSCLC)

UNTREATED STAGE IV NSCLC

Immune Checkpoint Inhibitors (ICIs) Phase III clinical trials with results

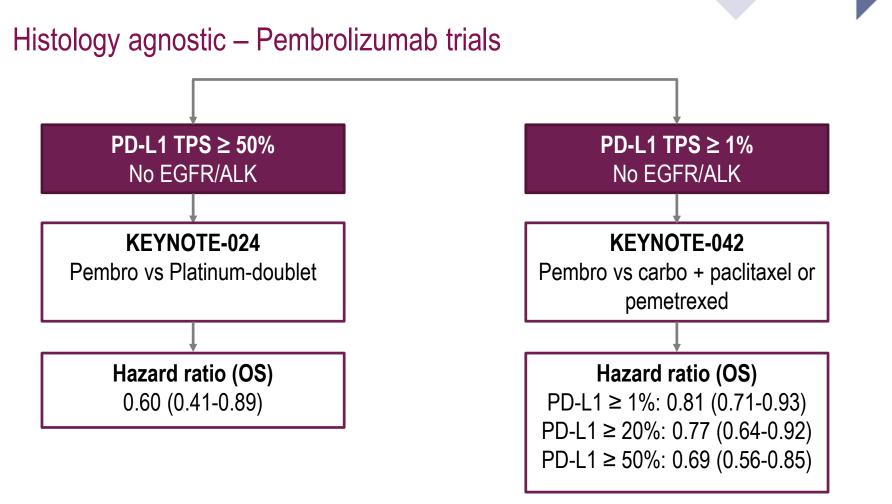
ICIs + Chemotherapy

KEYNOTE-189 KEYNOTE-407

IMpower-150

IMpower-130

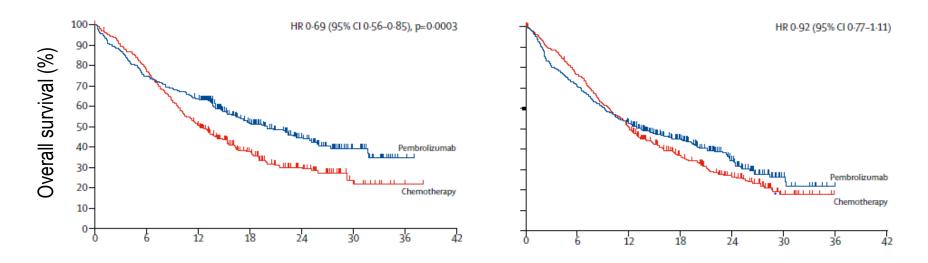
IMpower-131


IMpower-132

*Includes also combination Nivo+IPI and Nivolumab + chemo

UNTREATED STAGE IV NSCLC

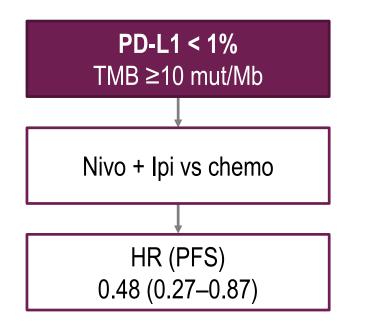
G Lopez ASCO 2018; M. Reck ESMO 2016.

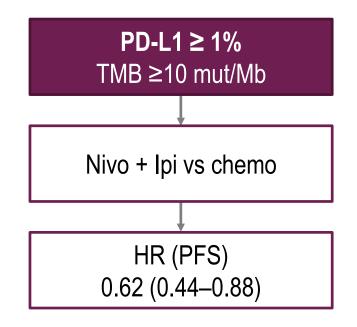


PEMBRO VS CHEMO UNTREATED NSCLC (KEYNOTE-042)

PD-L1 ≥50% Benefit

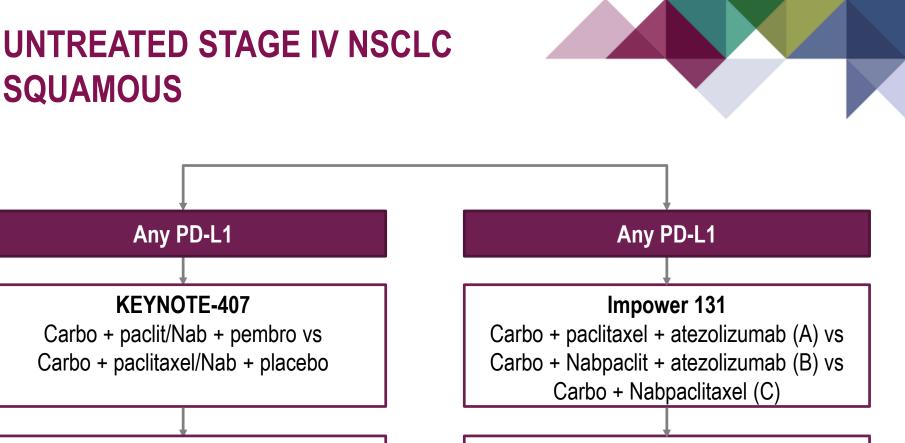
PD-L1 1-49% Non- Benefit


Reprinted from The Lancet, 393 (10183), Mok TSK, et al, Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic nonsmall-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial, 1819-1830, Copyright 2019, with permission from Elsevier.



UNTREATED STAGE IV NSCLC

Histology agnostic – CheckMate 227 Trial – Results by PD-L1



H. Borghaei ASCO 2018. M.D. Hellmann NEJM 2018

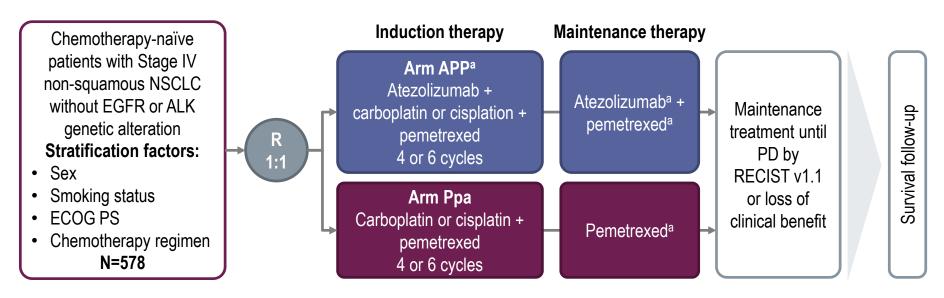
HR (PFS): 0.56 (0.45-0.70) TPS < 1%: 0.68 (0.47-0.98) TPS 1-49%: 0.56 (0.39-0.80) TPS ≥ 50%: 0.37 (0.24-0.58) Arm B vs Arm C HR (PFS): 0.71 (0.60-0.85) TC 0 and IC 0: 0.81 (0.64-1.03) TC 1/2 or IC 1/2: 0.70 (0.53-0.92) TC 3 or IC 3: 0.44 (0.27-0.71)

L Parez-Ares ASCO 2018; R Jotte ASCO 20185

IMPOWER130 - NON-SQUAMOUS NSCLC

Atezo + carbo + nab-paclitaxel vs Chemo

	Atezolizumab plus chemotherapy group		Chemotherapy g	roup		Hazard ratio (95% (
	Events/number of patients	Median progression- free survival, months	Events/number of patients	Median progression-f survival, months	free	
Sex						
Female	138/185	7.4	79/94	4-8	⊢	0.59 (0.45-0.78)
Male	209/266	6-4	119/134	5.6	⊢ ,	0.67 (0.54-0.85)
Age						
<65 years	173/227	6-8	99/114	5.5	⊢_ ♦	0.64 (0.5–0.82)
≥65 years	174/224	7.2	99/114	5-3	⊢	0.64 (0.5-0.82)
ECOG PS*						
0	142/189	7.9	78/91	5.6	⊢ ,	0.59 (0.44-0.78)
1	205/261	6.1	119/136	5.0	⊢_	0.68 (0.54–0.86)
2		NA	1/1	3.7		NA
Tobacco use history						
Never	43/48	8.1	16/17	4.6	• • • • • • • • • • • • • • • • • • •	0.63 (0.35-1.12)
Current or previous	304/403	6.9	182/211	5.5	⊢ ,	0.64 (0.53-0.77)
No liver metastasis	286/382	7.3	172/197	5.6	⊢ ,	0.59 (0.49-0.71)
at enrolment						
Liver metastasis	61/69	4.2	26/31	4-4	♦	0.93 (0.59–1.47)
at enrolment						
PD-L1-high	61/88	6.4	41/42	4.6	⊢	0.51 (0.34-0.77)
PD-L1-low	96/128	8.3	52/65	6.0	⊢	0.61 (0.43-0.85)
PD-L1-negative	190/235	6-2	105/121	4.7	⊢ •−	0.72 (0.56–0.91)
Intention-to-treat wild-type population	347/451	7.0	198/228	5.5	⊢♦ −1	0.64 (0.54-0.77)
				ſ		
				0.1		1 2.5
					vours atezolizumab plus chemotherapy	Favours chemotherapy


Forest plot of HR for PFS in the intention-to-treat wild-type population

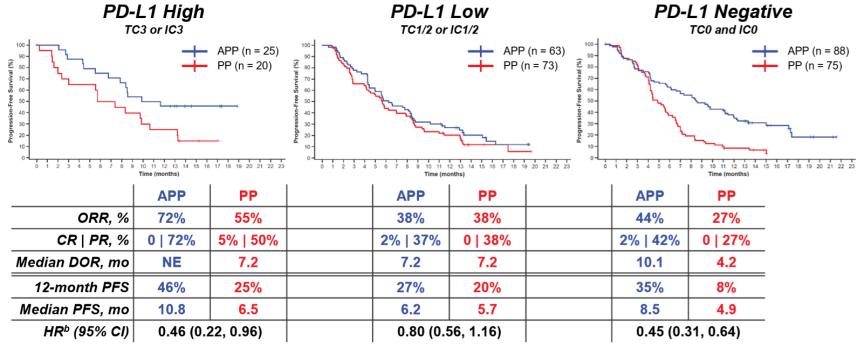
Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous nonsmall-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial, 924-937, Copyright 2019, with permission from Elsevier.

IMPOWER132 STUDY DESIGN

Co-primary endpoints: INV-assessed PFS and OS

Secondary endpoints: INV-assessed ORR and DOR, patient-reported outcomes and safety measures Exploratory analyses: Clinical and biomarker subgroup analyses

• Biomarker-evaluable tissue not mandatory for enrolment (was available from 60% of patients)


Papadimitrakopoulou VA. IMpower132: Efficacy & Safety. Presented at IASLC 19th World Conference on Lung Cancer, Toronto, Canada, September 2018. ^aAtezolizumab: 1200 mg IV q3w; Carboplatin: AUC 6 mg/mL/min IV q3w; Cisplatin: 75 mg/m² IV q3w; Pemetrexed: 500 mg/m² IV q3w. NCT02657434. Data cutoff: May 22, 2018.

IMPOWER-132 PFS BY PD-L1 STATUS

APP, atezolizumab + carboplatin/cisplatin + pemetrexed; PP, carboplatin/cisplatin + pemetrexed.

^a Overall HR 0.57 (0.45, 0.73) in biomarker-evaluable patients (60% of ITT). ^b Unstratified HR. Data cutoff: May 22, 2018.

Papadimitrakopoulou VA. IMpower132: Efficacy & Safety. Presented at IASLC 19th World Conference on Lung Cancer, Toronto, Canada. September 2018

SUMMARY OF RESULTS BY PDL1 SUBGROUPS

Trial	Tumour type	Interventions	Nº of patients	Main outcomes - results	Hazard Ratio (HR) by pdl1 stratification groups*	Trend for increased benefit with higher PDL1?
KEYNOTE-024	Advanced NSCLC and PD-L1 ≥ 50%	1 - Pembrolizumab 2 - Chemotherapy	305 (1:1)	mPFS 1 - 10.3 months 2 - 6.0 months	-	?
KEYNOTE-189	Metastatic nonsquamous NSCLC without sensitising EGFR or ALK mutations	1 - Chemo 2 - Chemo + Pembro	616 (2:1)	mOS at 12 months 1 – 69,2% 2 – 49,4% HR for death, 0.49 (0.38 to 0.64)	PDL1 < 1%: 0,59 PDL1 1-49%: 0,55 PDL1 ≥ 50 %: 0,42	Yes
IMPOWER-150	Nonsquamous NSCLC	1 - Atezo + Chemo 2 - Beva + Chemo 3 - Atezolizumab + Beva + Chemo	2 – 336 pts 3 – 356 pts	mPFS 2 – 6,8 months 3 - 8.3 months HR 0.59 (0.50–0.70)	TC0 and IC0: 0,77 TC0/1/2 and IC0/1/2: 0,68 TC1/2 or IC1/2: 0,56 TC1/2/3 or IC1/2/3: 0,50 TC3 or IC3: 0,39	Yes
KEYNOTE-042	Advanced NSCLC PD-L1 ≥ 50%	1 - Pembrolizumab 2 - Platinum based chemotherapy	1274 (1:1)	OS PDL1 ≥ 50% 20,0 vs 12,2 months PDL1 ≥ 20% 17,7 vs 13⋅0 months PDL1 ≥ 1% 16,7 vs 12,1 months	PDL1 ≥1% 0,81 PDL1 ≥20% 0,77 PDL1 ≥ 50% 0,69	Yes
Impower -130	Non-squamous NSCLC	1 - Atezo + Carbo + Nab- paclitaxel 2 - Carbo + Nab-paclitaxel	724 (2:1)	mOS 1 - 18,6mo; 2 – 13,9 mo mPFS 1 -7,0 mo vs 2 - 5,5 mo	PDL1 negative: 0,72 (0·56–0·91) PDL1 low: 0,61 (0·43–0·85) PDL1 High: 0,51 (0·34–0·77)	Yes
Impower -131	Stage IV squamous NSCLC	A - Atezo + Carbo + paclitaxel B - Atezo + Carbo + Nabpaclitaxel C - Carbo + Nabpaclitaxel	1021 (1:1:1)	mPFS B – 6,3mo C – 5,6 (HR, 0.715; P = 0.0001)	PDL1 neg: 0,81 (0,64-1,03) PDL1 low: 0,70 (0,53-0,92) Pdl1 high: 0,44 (0,27-0,71)	Yes
CHECKMATE- 026	Untreated stage IV or recurrent NSCLC and PD-L1 ≥ 1%	1 - Nivolumab 2 - Platinum based chemotherapy	423 (1:1)	mPFS 1 - 4.2 months 2 - 5.9 months	Pdl1 ≥ 5%: 1,18 Pdl1 ≥ 50%: 1,07	NO
KEYNOTE-407	Metastatic squamous NSCLC	1 - Chemo + Pembro 2 - Chemo + placebo	559 (1:1)	mOS 1 - 15.9 months 2 - 11.3 months, HR 0.64 (0.49–0.85)	PDL1 < 1%: 0.61 PDL1 1-49%: 0.57 PDL1 > 50%: 0.64	NO
CHECKMATE- 227	Stage IV or recurrent NSCLC that was not previously treated with chemotherapy.	Nivo Nivo + IPI Nivo +chemo Chemo	2220 (1:1:1:1)	1-year PFS (patients with high TMB) nivolumab+ipilimumab 42,6% chemotherapy 13.2%	PD-L1 < 1%; TMB ≥ 10 mut/Mb: 0,48 PD-L1 ≥ 1%; TMB ≥ 10 mut/Mb HR 0,62	NO
Impower-132	Stage IV non-squamous NSCLC without EGFR or ALK genetic alteration	1 - Atezo + platin + pemetrexed 2 - Platin + pemetrexed	578 (1:1)	12-mo PFS 1 – 33,7% 2 – 17%	PDL1 neg – HR 0.45 (0.31, 0.64) PDL1 low – HR 0.80 (0.56, 1.16) PDL1 high – HR 0.46 (0.22, 0.96)	NO

NSCLC AND PD-L1 EXPRESSION IMPLICATION FOR CLINICAL PRACTICE AND RESEARCH

Trend for increased benefit with ICIs alone on enriched PD-L1 NSCLC

On Combination ICI + chemo less importance of PD-L1 expression

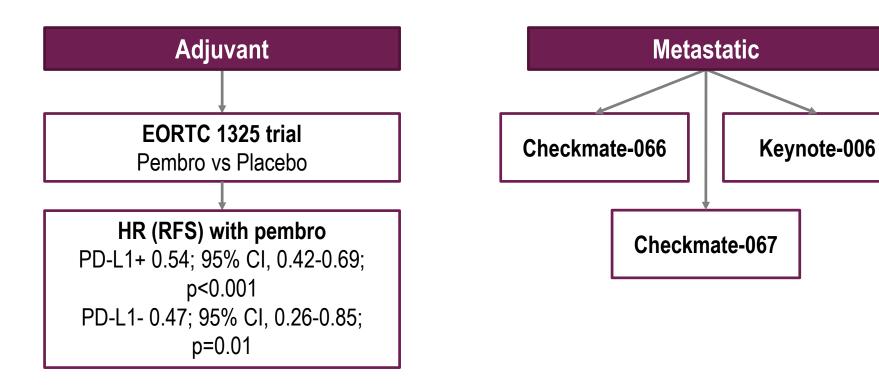
Many uncertainties on the real value of PD-L1 for clinical practice with ICIs in untreated NSCLC

Important questions to be answered

- Why PD-L1 expression has a high value in some studies and low in others?
- PD-L1 expression combined with other biomarkers (eg. TMB; specific neoantigens) for a score predictor of response in NSCLC?
- Are checkpoint inhibitors monotherapy better than combination with chemotherapy in PD-L1≥ 50% NSCLC untreated tumours?
- Chemo + ICI 1st line vs sequence of treatment, regardless PD-L1 expression?

MELANOMA

PHASE III ICI TRIALS IN MELANOMA STRATIFIED BY PD-L1

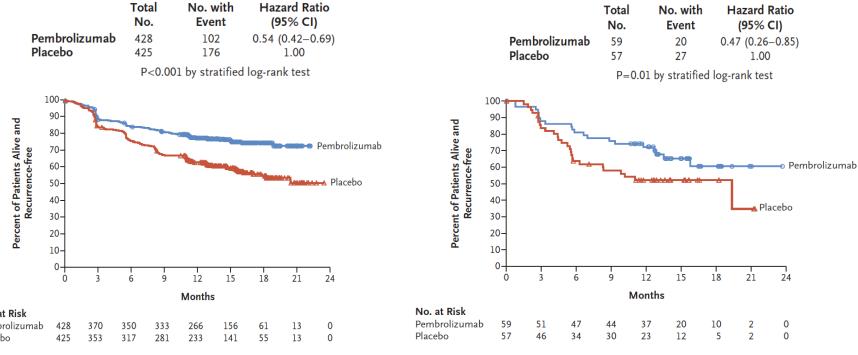

Trial	Population	Drugs	Clinical outcome	Definition and % of PD-L1+ melanomas	Reference
EORTC 1325	Stage III resected melanoma No in-transit mets IIIA (N1a >1 mm)	(1) Pembrolizumab 200mg Q3W (n=514) (2) Placebo 200mg Q3W (n=505)	<u>1-year RFS</u> Pembro: 75.4% Placebo: 61.0% HR 0.57; 98.4% Cl, 0.43-0.74; p<0.001	≥1% of PD-L1+ tumour and adjacent immune cells 83.7%	Eggermont AMM. et al, NEJM 2018
CM-066	Metastatic melanoma BRAF WT Treatment naïve	(1) Nivolumab 3mg/Kg Q2W + Placebo 1000mg/m ² Q3W (n=210) (2) DTIC 1000mg/m ² Q3W + Placebo 3mg/Kg Q2W (n=208)	<u>mPFS</u> Nivolumab + placebo: 5.1 months DTIC + placebo: 2.2 months HR 0.43; 95% CI, 0.34-0.56; p<0.001	≥5% of PD-L1+ tumour cells 35.4%	Robert C. et al, NEJM 2015
CM-067	Metastatic melanoma Treatment naïve	 (1) Ipilimumab 3mg/Kg Q3W + Nivolumab 1mg/Kg Q3W (n=314) (2) Nivolumab 3mg/Kg Q2W (n=316) (3) Ipilimumab 3mg/Kg Q3W (n=315) 	<u>mPFS</u> Ipilimumab + Nivolumab: 11.5 months* Nivolumab: 6.9 months Ipilimumab: 2.9 months* *HR 0.42; 95% CI 0.31-0.57; p<0.001	≥5% of PD-L1+ tumour cells 23.6%	Larkin J. et al, NEJM 2015
KN-006	Metastatic melanoma One prior line of treatment was allowed (except anti-PD(L)1 or anti-CTLA-4)	 (1) Pembrolizumab 10mg/Kg Q2W (n=279) (2) Pembrolizumab 10mg/Kg Q3W (n=277) (3) Ipilimumab 3mg/Kg Q3W (n=278) 	<u>mPFS</u> Pembrolizumab Q2W: 5.6 months Pembrolizumab Q3W: 4.1 months Ipilimumab: 2.8 months HR 0.61; 95% CI 0.50-0.75; p<0.001	≥1% of PD-L1+ tumour and adjacent immune cells 80%	Schachter J. et al. The Lancet 2017

RFS = recurrence-free survival. mPFS = median progression-free survival

PHASE III ICI TRIALS IN MELANOMA STRATIFIED BY PD-L1

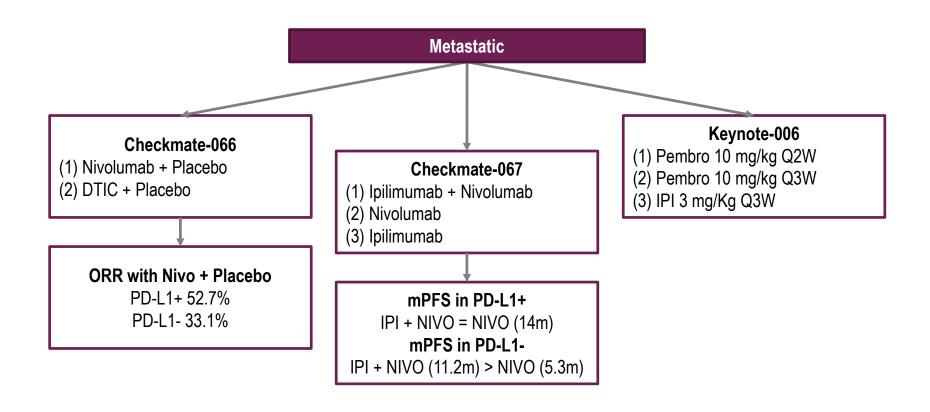
HR = Hazard ratio; RFS = recurrence-free survival. Eggermont AMM. et al, N Engl J Med 2018; 378:1789-1801.

From N Engl J Med, Eggermont AMM, Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma, 378:1789-1801, Copyright © (2018) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society. Eggermont AMM. et al, N Engl J Med 2018; 378:1789-1801.


40-40-30-30-20. 20-10-10-0-0. ġ Months Months No. at Risk No. at Risk Pembrolizumab Pembrolizumab Placebo Placebo

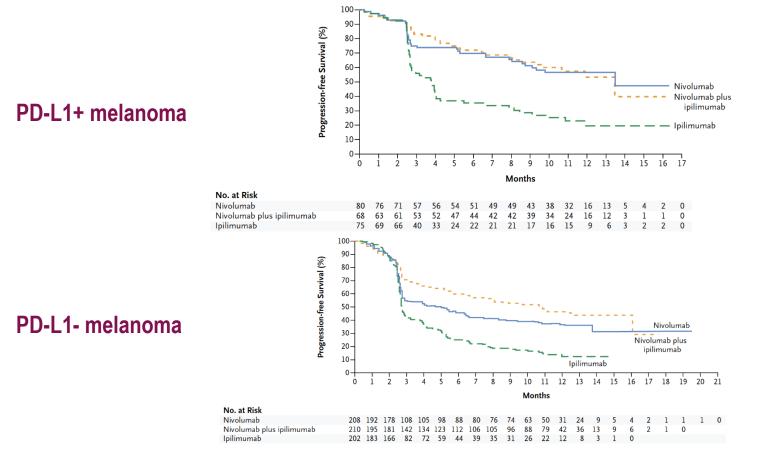
Pembro vs placebo Patients with PDL1-positive melanoma

Patients with PDL1-negative melanoma


EORTC 1325 TRIAL ADJUVANT

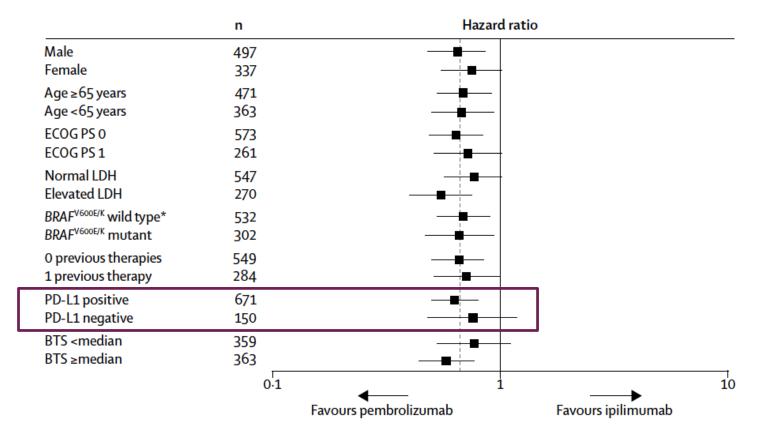
oncology Educational Portal for Oncologist

PHASE III ICI TRIALS IN MELANOMA STRATIFIED BY PD-L1



ORR = objective response rate; mPFS = median progression-free survival. Robert C. et al, NEJM 2015; Larkin J. et al, NEJM 2015; Schachter J. et al. The Lancet 2017.

CHECKMATE-067 METASTATIC: IPI VS NIVO VS IPI+NIVO


From N Engl J Med, Larkin J, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, 373:23-34. Copyright © (2015 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society

KEYNOTE-006 METASTATIC: PEMBRO VS IPI

Reprinted from The Lancet, 390 (10105), Schachter J. et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006), 1853-1862, Copyright 2017, with permission from Elsevier.

MELANOMA AND PD-L1 EXPRESSION

Implication for clinical practice and research

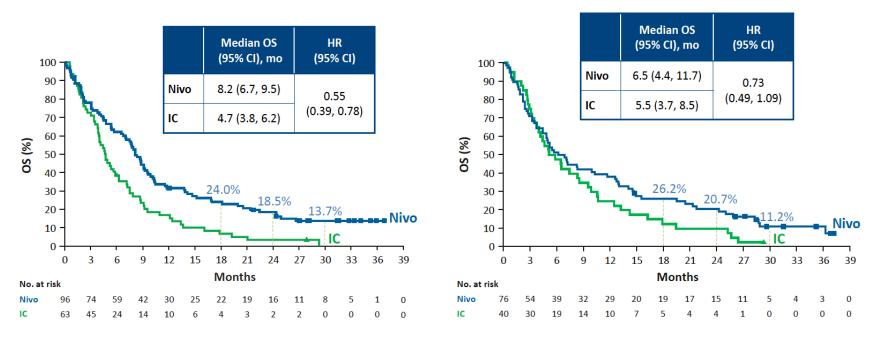
In melanoma, PD-L1 is not a good biomarker of response to immune checkpoint inhibitors

Challenges:

- Different antibodies and thresholds
- Intra & intertumour heterogeneity

The greatest benefit with the combination of nivolumab and ipilimumab versus nivolumab alone seems to occur in PD-L1- melanomas

HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC)



CHECKMATE 141

HNSCC progression after platinum based therapy - Nivo vs Chemo

PD-L1 expressors (≥1%) (57% of the tested patients)

PD-L1 non-expressors (<1%)

Reprinted from Oral Oncology, 81, Ferris RL, et al. Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumour PD-L1 expression, 45-51, Copyright 2018, with permission from Elsevier. Ferris RL, et al. N Engl J Med. 2016;375(19):1856-1867. Gillison M, et al. J Clin Oncol. 2017;35(Suppl): Abstract 6019.

PHASE III KEYNOTE-040 STUDY

Key eligibility criteria

- SCC of the oral cavity, oropharynx, hypopharynx, or larynx
- PD after platinum-containing regimen for R/M HNSCC or recurrence or PD within 3-6 months of multimodal therapy using platinum^a
- ECOG PS 0 or 1
- Known p16 status (oropharynx)^b
- Tissue sample^c for PD-L1 assessment^d

Stratification factors

- ECOG PS (0 vs 1)
- p16 status (positive vs negative)
- PD-L1 TPS^d (≥50% vs <50%)

Methotrexate 40 mg/m² qw^e OR Docetaxel 75 mg/m² q3w OR Cetuximab 250 mg/m² qw^f

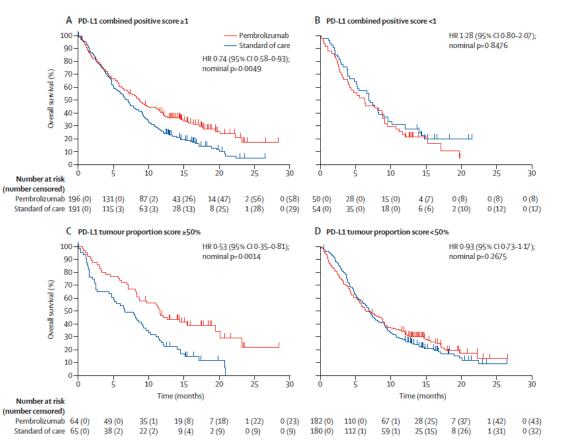
- Clinically stable patients with radiologic PD could continue treatment until imaging performed ≥4 wk later confirmed PD
- Crossover not permitted

^aLimit of 2 prior therapies for R/M HNSCC. ^bAssessed using the CINtec p 16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cNewly collected preferred. ^dAssessed using the PD-L1 IHC 22C3 pharmDx assay. TPS, tumour proportion score = % of tumour cells with membranous PD-L1 expression. ^eCould be increased to 60 mg/m² qw in the absence of toxicity. ^fFollowing a loading dose of 400 mg/m².

R

-1

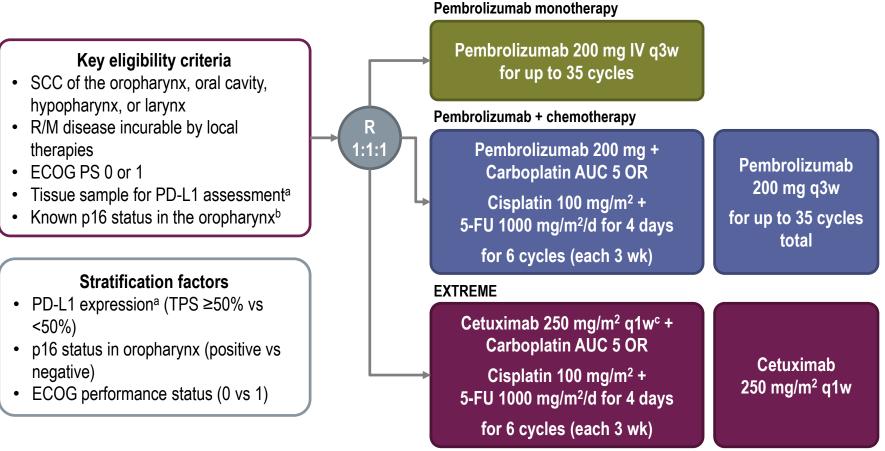
Cohen E, et al. Ann Oncol 2017;28(Suppl 5): abstract LBA45_PR.



KEYNOTE-040

nulations

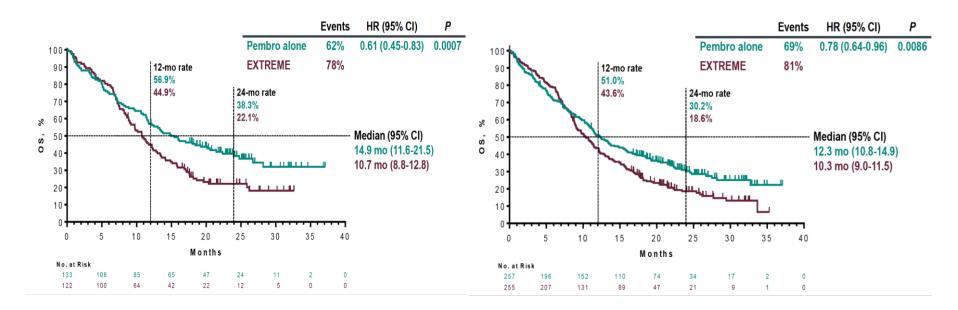
Overall survival in the intention-to-treat populations according to PD-L1 expression category



Reprinted from The Lancet, 393 (10167), Cohen EW, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study, 156-167. Copyright 2019, with permission from Elsevier.

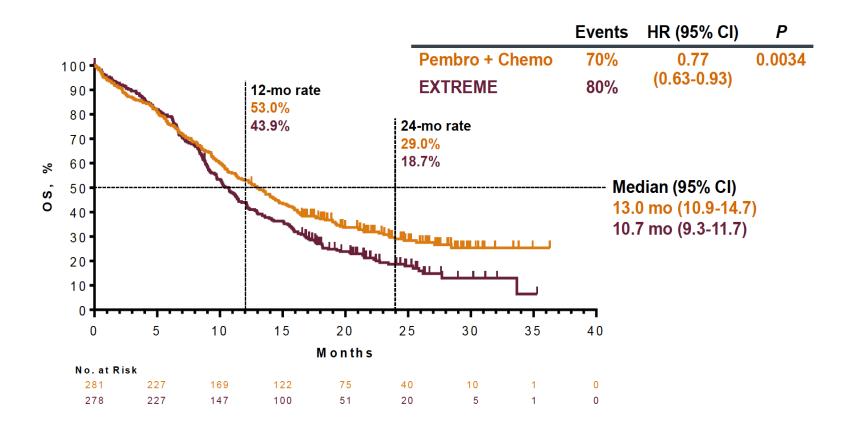
KEYNOTE-048 STUDY DESIGN (NCT02358031)

^aAssessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS, tumour proportion score = % of tumour cells with membranous PD-L1 expression. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cFollowing a loading dose of 400 mg/m². Burtness et al. Abstract #LBA8 PR. ESMO 2018.



Overall survival: P vs E, CPS ≥20 population

Overall survival: P vs E, CPS ≥1 population



Burtness B, et al. Abstract #LBA8 PR. ESMO 2018. By permission of Prof B. Burtness .

OVERALL SURVIVAL: P+C VS E, TOTAL POPULATION

Burtness B, et al. Abstract #LBA8 PR. ESMO 2018. By permission of Prof B. Burtness..

PHASE III TRIALS TESTING ICIS IN RECURRENT/METASTATIC HNSCC BY PD-L1 STATUS

Trial	Tumour type	Interventions	N° of patients	PD-L1 Expression location	Cut-off	HR for OS Overall	HR for OS PD-L1+	HR for OS PD-L1-	PDL-1 a relevant biomarker?
Checkmate- 141	Metastatic HNSCC in 2 nd line	Nivolumab vs chemotherapy	240	TCs	>1%	0.68	0.55	0.73	Yes
KEYNOTE- 040	Metastatic HNSCC in 2 nd line	Pembrolozumab vs chemotherapy	247	TCs+lcs (CPS) TCs (TPS)	CPS >1 TPS >50%	0.80 (P 0.016)	CPS ≥1 0.74 TPS ≥50% 0.53	CPS <1 1,28 TPS <50% 0.93	Yes
KEYNOTE- 048	Metastatic HNSCC in 1 st line	1. Pembro vs chemo	882	TCs+lcs (CPS)	CPS >1% CPS >20%	0.77 (P – 0.0086)	0.78 0.61	Ø Ø	Yes for monotherapy
		2. Pembro + chemo vs chemo			CPS >1% CPS >20%		0.71 0.69	Ø Ø	No for combination with chemotherapy

OS: overall survival; HR: hazard ratio; TCs: tumour cells; Ics: immune cells; CPS:number of PD-L1-positive cells divided by total number of tumour cells 100; TPS: percentage of tumour cells with membranous PD-L1 expression Ø, data no available

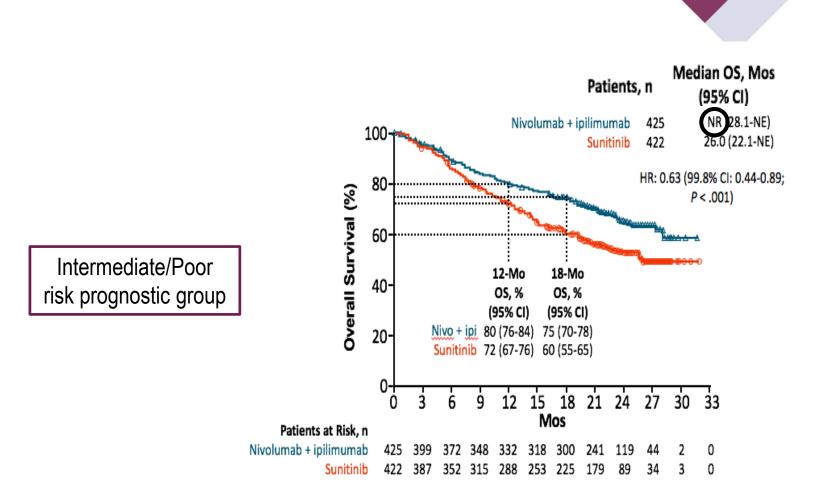
IMPLICATION OF PD-L1 EXPRESSION AND CHALLENGES IN CLINICAL PRACTICE FOR HNSCC

- **KEYNOTE-048** Better OS with pembro monotherapy in first line HNSCC and trend for more benefit with higher PD-L1 expression (CPS ≥20% vs ≥1%)
- Benefit on combination pembro + chemo regardless PDL-1 expression
- **KEYNOTE-040** Improved OS with higher pdl1 expression
- **CHECKMATE-141** Trend for more benefit with higher PD-L1 expression
- No firm conclusion on the value of pdl1 for clinical practice with ICIs in HNSCC
 - Trend for relevance on ICI monotherapy but lower importance on combination ICI+ chemo
- Other different biomarkers under investigation: HPV status, tumour immune infiltration, TMB, etc.

RENAL CARCINOMA

POSITIVE PHASE III TRIALS WITH CPI IN METASTATIC RENAL CANCER

Trial	Setting	Interventions	No. pts	Main outcomes results	Adverse events	PDL1 stratification
CHECKMATE- 214	Ph III, 1st line Intermediate-bad prognostic (Including sarcomatoid)	A. Nivo (3 mg/kg)-Ipi (1 mg/kg) B. Sunitinib	1096 (1:1)	OS. N-I: Not Reached (NR)/S: 26 m PFS. N-I: 11,6 m/S: 8,4 m ORR. N-I: 42%./S: 27%	Any grades: N-I: 93%; S: 97% G3/G4: N-I: 46%; S: 63%	No (regardless PDL1 status)
IMMOTION 151	Ph III, 1st line (Including sarcomatoids)	A. Atezo + Beva B. Sunitinib	915 (1:1)	OS. PDL1+: All: A-B 34 m vs S: 32,7 m A-B 33,6 m vs S: 34,9 m PFS. PDL1+: All: A-B 11,2 m vs S: 7,7 m. A-B 11,2 m vs S: 8,4 m ORR. PDL1+: All: A-B 43% vs S: 35%. A-B 37% vs S: 33%	Any grades: A-B: 93%/S: 97% G3/G4: A-B: 46%/S: 63% AEs-Discontinuation: 5% (A-B) vs 8% (S)	Yes <1% vs ≥1%, assessed by ICH- VENTANA PD-L1 SP142 assay
JAVELIN RENAL 101	Ph III 1st line	A. Avelumab + Axitinib B. Sunitinib	886 (1:1)	OS. PDL1+: All: A-A NR vs S: NR A-A NR vs S: NR PFS . PDL1+: All: A-A 13,8 m vs S: 7,2 m. A-A 13,8 m vs S: 8,4 m ORR. PDL1+: All: A-A 55,2% vs S: 25,5%. A-A 51,4% vs S: 25,7%	Any grades: A-A: 99,5% S: 99,3% G3/G4: A-A: 71,2% S: 71,5%	Yes <1% vs ≥1%, assessed by ICH- VENTANA PD-L1 (SP263) assay

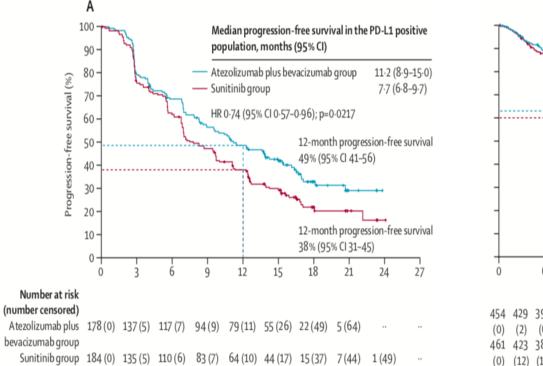


POSITIVE PHASE III TRIALS WITH CPI IN METASTATIC RENAL CANCER

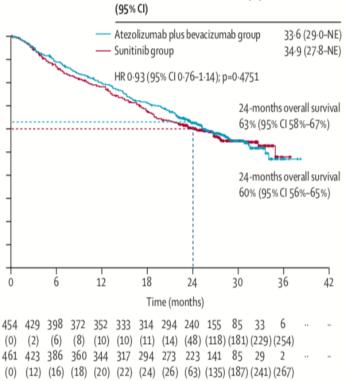
Trial	Setting	Interventions	No pts	Main outcomes results	Adverse events	Pdl1 stratification
KEYNOTE-426	Ph III, 1st line (including sarcomatoid features)	1. Pembro + Axitinib 2. Sunitinib	1062 (1:1)	OS: P-A: NR S: NR PFS: P-A 15,1 m S: 10,1 m ORR: P-A 59,3% S: 35,7%	Any grades: -P-A: 98,4% -S: 99,5% G3/G4: -P-A: 75,8% -S: 70,6%	 No results so far Assessed by IHC 22C3 pharmDx assay (CPS)
CHECKMATE- 025	Ph III 2nd/3rd line	1. Nivo 2. Everolimus	821 (1:1)	OS: PDL1+: N 21,8 m vs E: 18,8 m All: N 25 m vs E: 19 m -> PDL1 <1%: N 27,4 m vs E 21,2 m PFS: N: 4,6 m E: 4,4 m ORR: N: 25% vs E: 5%	Any grades: -N: 79% -E: 88% G3/G4: -N: 19% -E: 39%	 Yes, but just OS Assessed by Dako PD-L1 ICH staining

1ST LINE: CHECKMATE 214

From N Engl J Med 2018, Motzer RJ, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma 378(14)., 1277-1290 Copyright © (2018) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society



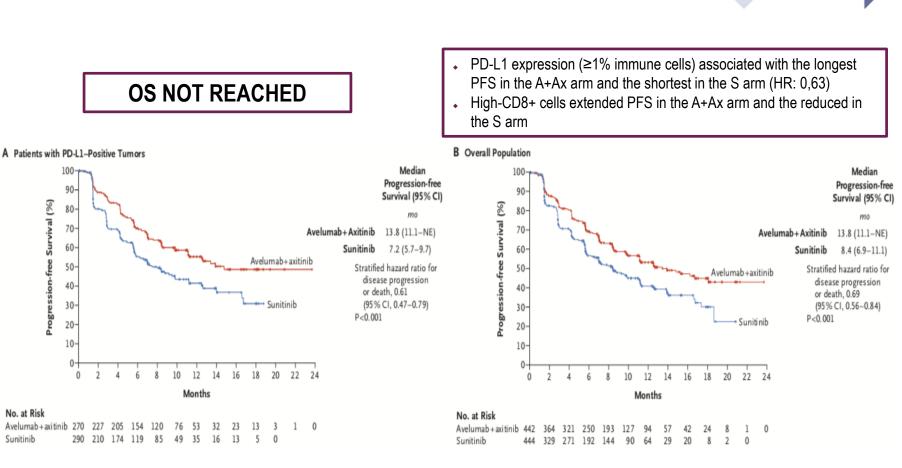
1ST LINE: IMMOTION 151: ATEZO+BEVA



Median overall survival in the ITT population, months

PFS in PDL1+ cohort

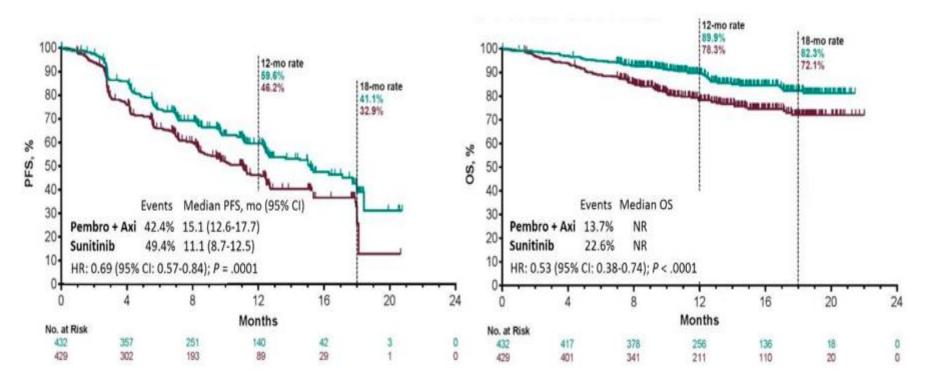
OS in ITT cohort



Reprinted from The Lancet, 393 (10189), Rini BI, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial, 2404-2415, Copyright 2019, with permission from Elsevier

1ST LINE: JAVELIN RENAL 101: AVELUMAB + AXI

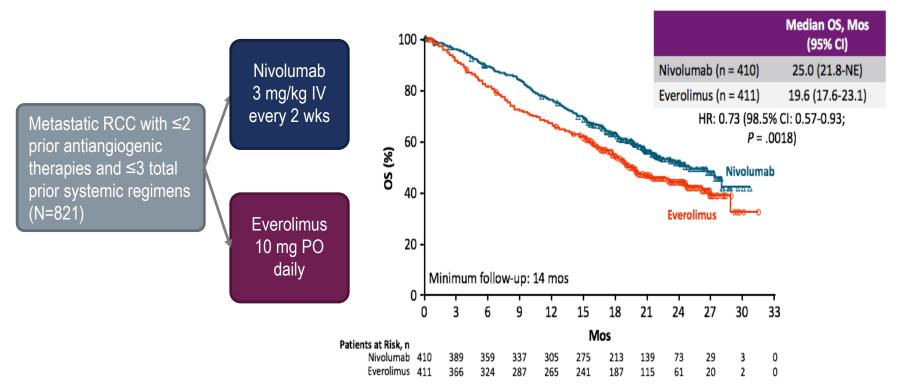
From N Engl J Med 2019, Motzer RJ, et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma 380(12)., 1103-1115 Copyright © (2019) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society. Notzer. NEJM, 2019/ESMO 2018. Abstract LBA6. Choueiri. ASCO 2019. Abstract 101.



1ST LINE: KEYNOTE 426: PEMBRO + AXI

PFS in ITT population

OS in ITT population


From N Engl J Med 2019, Rini BI, et al.Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma 380., 1116-1127 Copyright © (2019) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society. Rini, NEJM 2019/Powles, Genitourinary Cancers Symposium, 2019. Abstr 543.

2ND LINE: CHECKMATE 025: NIVO

Exploratory analysis of OS by subgroups

From N Engl J Med 2015, Motzer RJ, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma, 373(19)., 1803-1813 Copyright © (2015) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

RENAL CELL CARCINOMA AND PD-L1 EXPRESSION

Learned lessons for clinical practice

CPI has been rapidly adopted into the routine care of patients

- CPI: opportunity of long term survival
- CPI: treatment-free survival QoL (against TKIs)

New approaches needed: Subsequent treatments, perioperative strategy, new combinations

Better understanding of the immunological effects of TKIs and mTOR inhibitors (sequence)

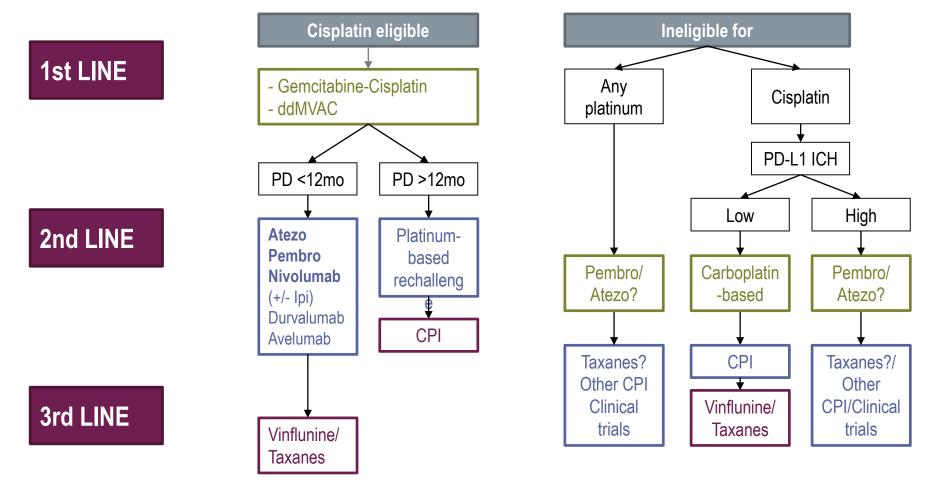
Clinical trials with IO agents need to use IO endpoints

Selecting patients: Searching for new biomarkers

UROTHELIAL CARCINOMA

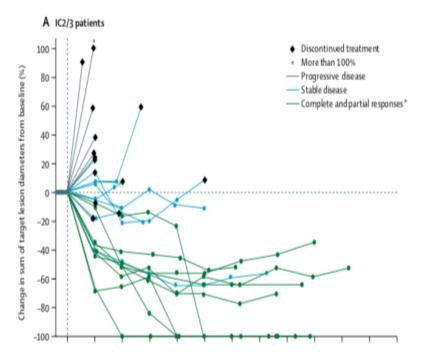
POSITIVE PHASE III TRIALS WITH CPI IN METASTATIC UROTHELIAL CANCER

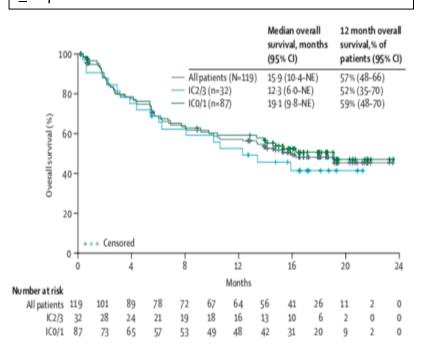
Trial	Setting	Interventions	No patients	Main outcomes results	Adverse events	PDL1 stratification
IMVIGOR-210	Ph II Cohort 1: 1st line, cisplatin- ineligible *PDL1>5%	Atezolizumab	119 (cohort 1)	OS: 15,9 m PFS: 2,7 m ORR: IC2/3: 23% (9% CR)	Any: 66% G3/G4: 16%	Yes - Assessed by SP142 assay (Ventana, AZ, USA). - IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%).
KEYNOTE-052	Ph II 1st line, cisplatin- ineligible * CPS > 10%	Pembrolizumab	370	OS: 11,95 m PFS: 2,3 m ORR: 28,9 (8,1% CR)	Any: 62% G3/G4: 19%	Yes -Assessed by Dako 22C3 assay, CPS. -PD-L1 cut-off to define a positive level at which responses were most enriched.
IMVIGOR-211	Ph III 2nd line (after platinum)	1. Atezolizumab 2. Chemotherapy- CT (investigator choice): - Vinflunine - Paclitaxel - Docetaxel	467 (931 in total)	OS: Atezo: 8,9 m; IC2/3: 11,1 m CT: IC2/3: 10,6 m PFS: Atezo: 2,4 m; CT: 4,2 m ORR: Atezo:13,4%; IC2/3: 23% (7% CR) CT: 13,4%; IC2/3: 21,6%	Any: -Atezo: 69%; IC2/3: 75% -Chemo: 89%; IC 2/3: 88% G3/G4: Atezo: 20%	Yes - Assessed by VENTANA SP142 PD-L1 IHC assay. -IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%)
CHECKMATE- 275	Ph II 2nd line (after platinum)	Nivolumab	265	OS: 8.7 m PDL1< 1%: 5,95 m; PDL1 >1%: 11,3 m PFS: 2 m ORR: 19,6% PDL1 <1%: 16,1%; PDL1 >1%: 23,8%; PDL1 >5%: 28,4%	Any: 64% G3/G4: 18%	Yes - Assessed by Dako PD-L1 IHC 28-8 pharmDx kit - ≥1% or ≥5% tumour cell membrane staining


POSITIVE PHASE III TRIALS WITH CPI IN METASTATIC UROTHELIAL CANCER

Trial	Setting	Interventions	No patients	Main outcomes results	Adverse events	PDL1 stratification
STUDY 1108	Ph I/II 2nd line (after platinum)	Durvalumab	191	. OS 18,2, m PDL1 high: 20 m PDL1 low/negative: 8,1 m . PFS 1,5 m PDL1 high: 2,1 m PDL1 low/negative: 1,4 m . ORR 17,8% PDL1 high: 27,6% PDL1 low/negative: 5,1%	Any: 60,7% G3/G4: 6,8%	Yes - Assessed by SP-263 anti-PD-L1 assay (Ventana Medical Systems) - Enrollment regardless PDL1 status (although there was some point that it was) - PDL1 high: ≥25%
JAVELIN SOLID TUMOURS	Ph Ib 2nd line (after platinum)	Avelumab	249	. OS 6,5 m PDL1 >5%: 8,2 m PDL1 <5%: 6,2 m . PFS 6,3 m (by inmune-related response), 1,5 m PDL1 >5%: 11,9 m PDL1 <5%: 6,1 m . ORR 17%	Any: 67% G3/G4/G5: 10,8%	Yes - Assessed by Dako PD-L1 IHC73-10 pharmDx assay - PD-L1 cutoff of 5% or higher. - Mutational load established by RNASeq
KEYNOTE-045	Ph III 2nd line (after platinum)	1. Pembrolizumab-P 2. Chemotherapy-CT: - Vinflunine - Paclitaxel - Docetaxel	542 (748)	. OS (CPS>10%) P: 10,3 m; CT: 7,4 m . PFS (CPS>10%) P: 2,1 m; CT: 3,3 m . ORR (CPS>10%) P: 21,1% ; CT: 11,4%	Any: P: 60,9% C: 90,2% G3/G4/G5: P: 15% C: 49,4%	Yes, - Assessed by PD-L1 IHC 22C3 pharmDx assay (Dako North America)

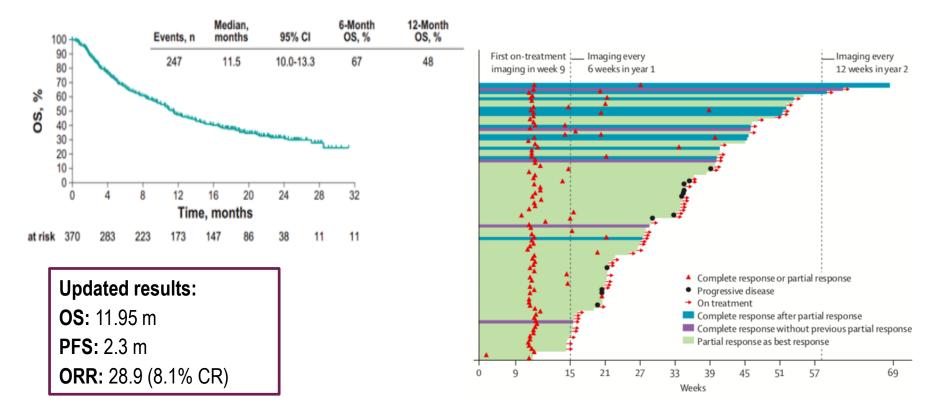
ADVANCED UC: TREATMENT ALGORITHM





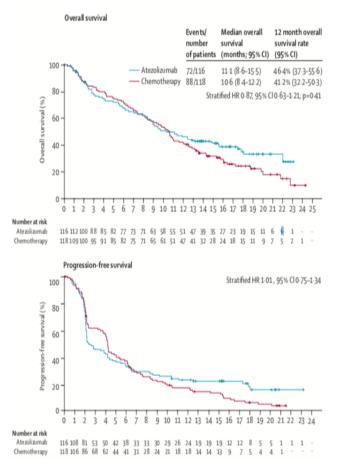
1ST LINE-INELIGIBLE PD-L1 >5% ATEZOLIZUMAB: IMVIGOR 210

ORR IC2/3 28% (23% all groups) Median OS: 15,9 months (95% CI 6.6-9.3) for the entire cohort of pts Restriction by **PDL1 status** in previously untreated patients: **Decreased survival in patients with** <u>low PDL-</u>1 expression


Rosenberg J, et al. The Lancet, 2016, 387(10031) 2016: 1909-1920

Reprinted from The Lancet,, 389 (10064), Balar AV, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial: 67-76. Copyright 2017, with permission from Elsevier.

1ST LINE-INELIGIBLE CPS >10% PEMBROLIZUMAB: KN 052



Reprinted from The Lancet Oncol, 18 (11), Balar AV, et al, First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study, 1483-1492, copyright 2017, with permission from Elsevier. By permission of Dr Vuky J, J Clin Oncol 2018;36(suppl).; Presented at ASCO 2018; Abstract 4524.

2ND LINE ATEZOLIZUMAB: IMVIGOR 211

Negative results:

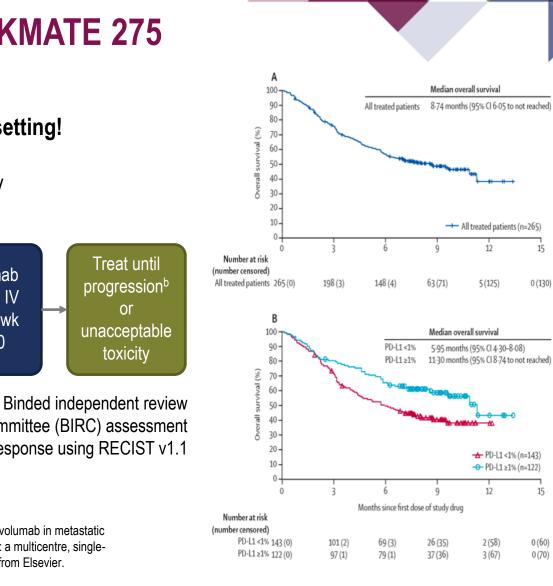
- PD-L1+: More favourable outcome with **both** CT and atezolizumab
- PD-L1 assay disparities

	IC2/3 population		ITT population	
	Atezolizumab group (n=116)	Chemotherapy group (n=118)	Atezolizumab group (n=467)	Chemotherapy group (n=464)
Progression-free survival				
Patients with event (%)*	93 (80%)	105 (89%)	407 (87%)	410 (88%)
Median (months; 95% Cl)	2.4 (2.1-4.2)	4/2 (3-7-5-0)	2.1 (2.1-2.2)	4.0 (3.4-4.2)
Objective response†				
Number of evaluable patients	113	116	462	461
Number of patients with response (%, 95% CI)	26 (23·0%, 15·6-31·9)	25 (21-6%, 14-5-30-2)	62 (13·4%, 10·5-16·9)	62 (13:4%, 10:5-16:9)
Best overall response†				
Complete response	8 (7%)	8 (7%)	16 (3%)	16 (3%)
Partial response	18 (16%)	17 (15%)	46 (10%)	46 (10%)
Stable disease	23 (20%)	37 (32%)	92 (20%)	162 (35%)
Progressive disease	47 (42%)	30(26%)	240 (52%)	150 (32%)
Missing or unevaluable	17 (15%)	24 (21%)	68 (15%)	87 (19%)
Duration of response†				
Patients with event (%)*	10/26 (38%)	20/25 (80%)	23/62 (37%)	49/62 (79%)
Median (months; 95% CI)	15-9 (10-4-NE)	8.3 (5.6-13.2)	21.7 (13.0-21.7)	7-4 (6-1-10-3)

Reprinted from The Lancet, 391 (10122), Powles T, et al, Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial, 748-757, copyright 2018, with permission from Elsevier.

2ND LINE **NIVOLUMAB: CHECKMATE 275**

5% of CR in second-line setting!


Open-label, single-arm, Phase 2 study

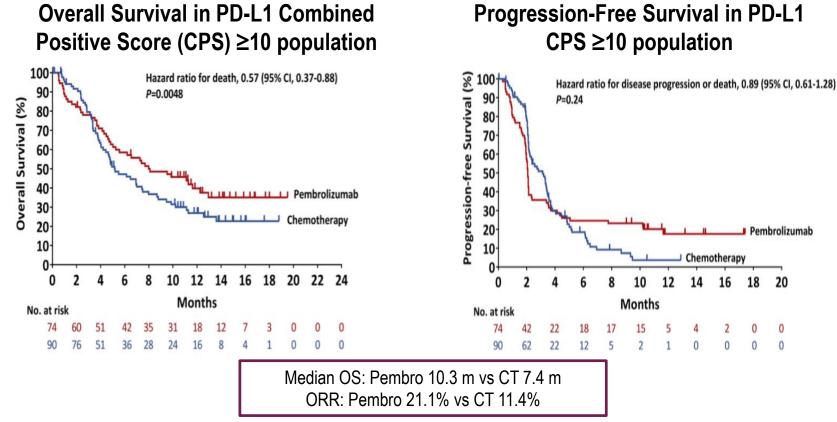
Metastatic or locally advanced mUC Nivolumab Disease progression 3 mg/kg IV on prior platinumor every 2 wk based therapy N=270 **Evaluable PD-L1** tumour tissue sample^a committee (BIRC) assessment

of response using RECIST v1.1

Reprinted from The Lancet Oncol, 18 (3), Sharma P, et al, Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, singlearm, phase 2 trial, 312-322, copyright 2017, with permission from Elsevier.

oncology

15

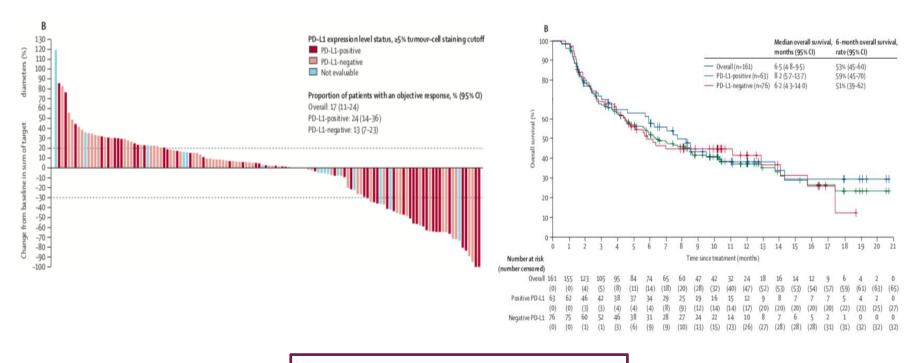

0(60)

0 (70)

15

0 (130)

2ND LINE PEMBROLIZUMAB: KEYNOTE 045



From N Engl J Med, Bellmunt J, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma, 376:1015-1026. Suppl. Copyright © (2017) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society."

2ND LINE AVELUMAB: JAVELIN SOLID TUMOUR

Phase 1b, UC cohort (n=249) Single-arm, multicenter trial

Reprinted from The Lancet Oncol, 19 (1), Patel MR, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumour): pooled results from two expansion cohorts of an open-label, phase 1 trial, 51-64, copyright 2018, with permission from Elsevier.

2ND LINE DURVALUMAB: STUDY 1108

	PD-L1 high	PD-L1 low/negative	Total
No. of patients (events)	98 (30)	79 (35)	191 (68)
Median OS (95% CI), mo	20 (11.6-NE)	8.1 (3.1-NE)	18.2 (8.1-NE)
OS rate, % (95% CI) 6 mo 9 mo 12 mo Median PFS (95% CI), mo	72 (62-80) 66 (53-77) 63 (49-74) 2.1 (1.4-2.8)	51 (38-63) 41 (21-60) 41 (21-60) 1.4 (1.3-1.5)	64 (56-71) 57 (47-66) 55 (44-65) 1.5 (1.4-1.9)
PFS rate , % (95% Cl) 6 mo 9 mo 12 mo	31 (22-41%) 25 (16-35%) 21 (13-31%)	8 (3-16%) 8 (3-16%) 8 (3-16%)	22 (16-28) 18 (12-25) 16 (10-23)

Median time to response: 1.41 mo (range 1.2-7.2)

٠

٠

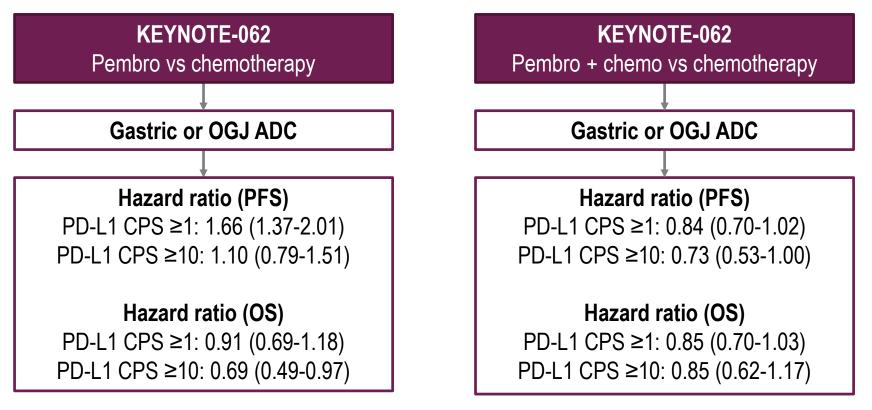
- Median duration of response (DOR) in as-treated population: Not reached (17/34 responders -50%- had a response lasting at least 6 mo and 26 -76.5%- had an ongoing response at data cut off
- Tumour shrinkage and Deep durable changes were seen in both PD-L1 subgroups
- Median PFS 1.5 mo (95% CI, 1.4-1.9), median OS 18.2 mo (95% CI, 8.1-Not estimable -NE-)

Data retrieved from Powles, JAMA Oncol, 2017

UROTHELIAL CELL CARCINOMA AND PD-L1 EXPRESSION

Learned lessons for clinical practice

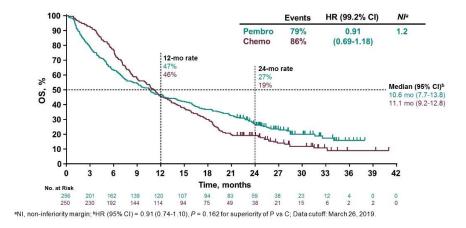
- CPIs have shown long-term durable response and tolerable safety profiles
- However, ORR with CPI just around 25-30%
- Combination of different agents (antiPD1/PD-L1 + chemotherapy, antiangiogenics, etc.) / New drugs: M7824 (TGFß, Sanjeev Mariathasan, Nature 2018) are needed
- There is controversy between PD-L1 expression and ORR
- New biomarkers to guide therapy and develop novel combination therapies

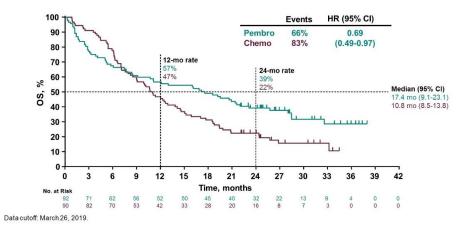

PREVIOUSLY UNTREATED OESOPHAGO-GASTRIC CANCER

FIRST LINE ADVANCED OR METASTATIC OESOPHAGO-GASTRIC CANCERS

Pembrolizumab trials

Tabernero J, et al, ASCO 2019.

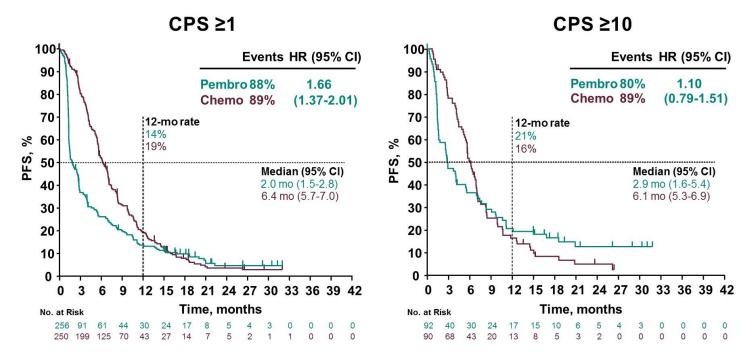




PEMBRO VS CHEMO 1ST LINE GASTRIC/OGJ (KEYNOTE-062)

Overall survival: P vs C (CPS \geq 1)

Overall survival: P vs C (CPS ≥10)

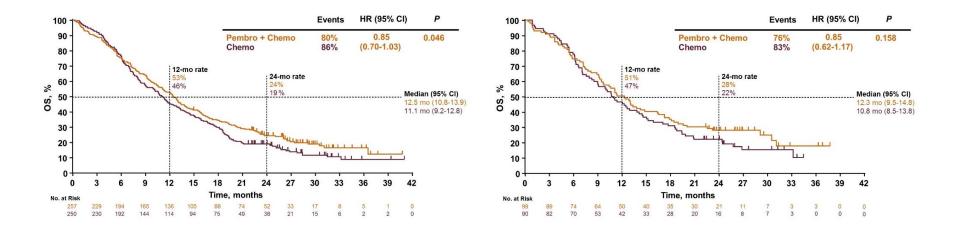

Tabernero J, et al, ASCO 2019.. By permission of Prof J. Tabernero.

PEMBRO VS CHEMO 1ST LINE GASTRIC/OGJ (KEYNOTE-062)

Progression-free survival: P vs C

PFS assessed per RECIST v1.1 by blinded independent central review (final analysis of PFS occurred at IA2); Data cutoff: Sept 28, 2018.

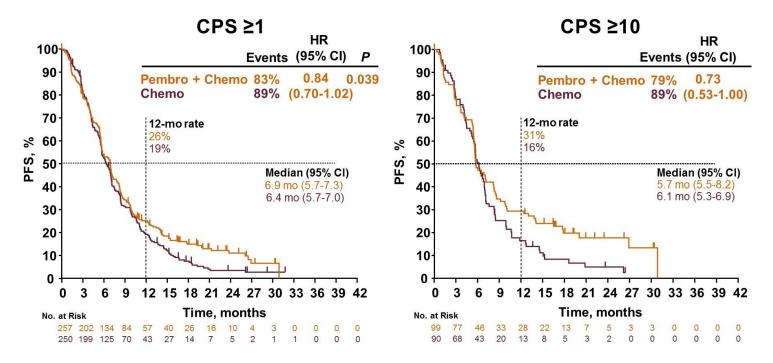
Tabernero J, et al, ASCO 2019. By permission of Prof J. Tabernero.



PEMBRO + CHEMO VS CHEMO 1ST LINE GASTRIC/OGJ (KEYNOTE-062)

Overall survival: P+C vs C (CPS \geq 1)

Overall survival: P+C vs C (CPS ≥10)


Data cutoff: March 26, 2019. Tabernero J, et al, ASCO 2019. By permission of Prof J. Tabernero.

PEMBRO + CHEMO VS CHEMO 1ST LINE GASTRIC/OGJ (KEYNOTE-062)

Progression-free survival: P+C vs C

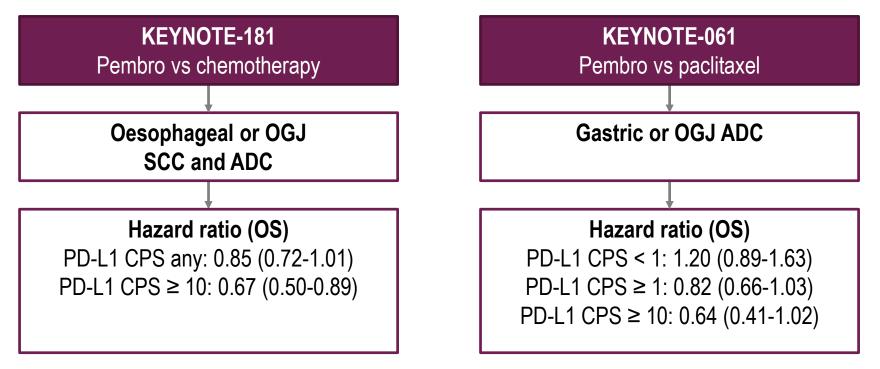
PFS assessed per RECIST v1.1 by blinded independent central review (final analysis of PFS occurred at IA2); Data cutoff: Sept 28, 2018.

Tabernero J, et al, ASCO 2019. By permission of Prof J. Tabernero.

TRIALS WITH ICI AND PD-L1

Subgroups untreated oesophago-gastric cancer patients

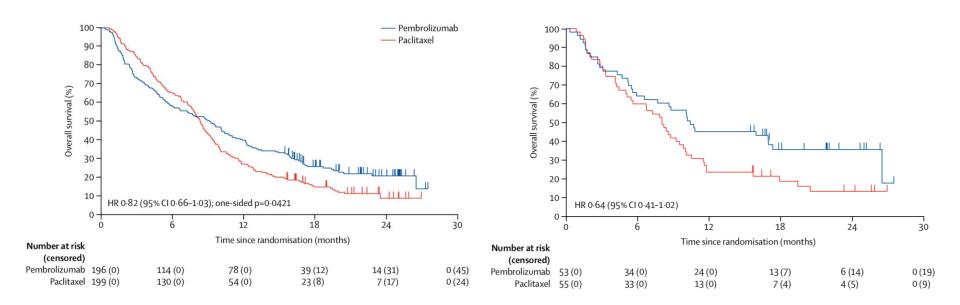
Trial	Tumour type	Interventions	N° of patients	Main outcomes results	Pdl1 stratification Results (HR)*	Pdl1 good predictor of response?
KEYNOTE- 062	Advanced/metast atic gastric or gastro- oesophageal adenocarcinoma	 Pembrolizumab Pembrolizumab + chemotherapy Chemotherapy 	763 (1:1:1)	mOS (CPS ≥ 1) 1 – 10.6 months 3 – 11.1 months HR (1 vs 3): 0,91 (0,69-1,18) p=na	1 vs 3 CPS ≥ 10: HR OS 0,69 (0.49- 0.97) 1 vs 3 CPS ≥ 10:	Yes?
				mPFS (CPS \geq 1) 1 – 2.0 months 3 – 6.4 months	HR PFS 1,10 (0.79- 1.51)	
				HR (1 vs 3): 1,66 (1,37-2,01) p=na	2 vs 3 CPS ≥ 10: HR OS 0,85 (0.62-	
				mOS (CPS ≥ 1) 2 – 12.5 months	1.17)	
				3– 11.1 months HR (2 vs 3): 0,85 (0,70-1,03) p=0.046	2 vs 3 CPS ≥ 10: HR PFS 0.73 (0.53- 1.00)	
				mPFS (CPS \ge 1) 2 - 6.9 months 3 - 6.4 months		
				HR (2 vs 3): 0,84 (0,70-1,02) p=0.039		


PREVIOUSLY TREATED OESOPHAGO-GASTRIC CANCER

SECOND LINE ADVANCED OR METASTATIC OESOPHAGO-GASTRIC CANCERS

Pembrolizumab trials

Shah M et al, ASCO 2019; Shitara K et al, Lancet 2018

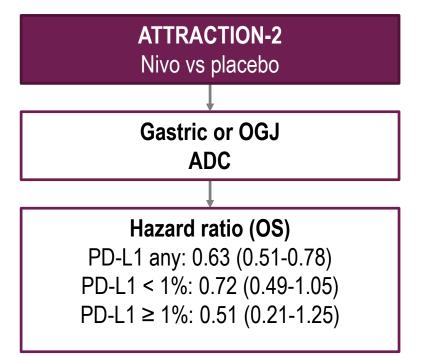


PEMBRO VS PACLITAXEL 2ND LINE GASTRIC/OGJ (KEYNOTE-061)

PD-L1 CPS \geq 1

No benefit

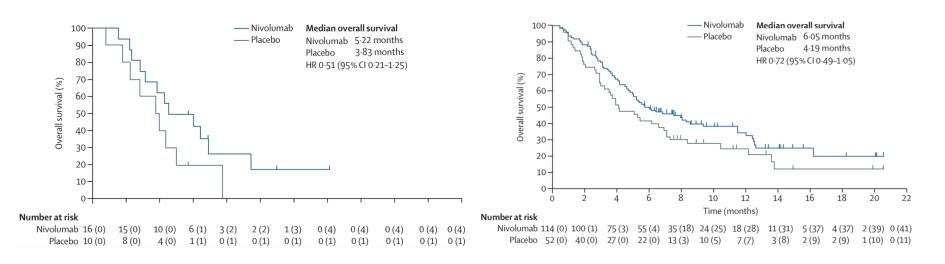
PD-L1 CPS ≥ 10 Benefit?


Reprinted from The Lancet, 392 (10142), Shitara K, et al, Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial, 123-133, copyright 2018, with permission from Elsevier.

THIRD LINE ADVANCED OR METASTATIC OESOPHAGO-GASTRIC CANCERS

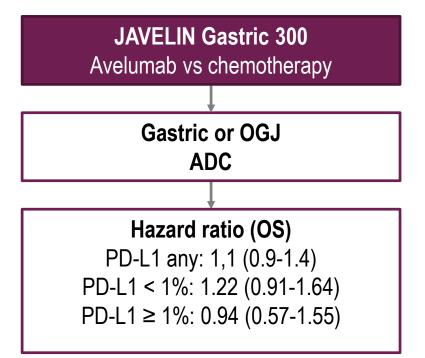
Kang YK et al, Lancet 2017





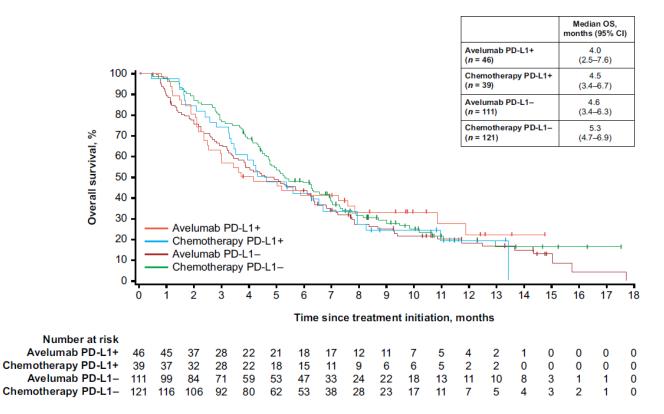
NIVOLUMAB VS PLACEBO 3RD LINE GASTRIC/OGJ (ATTRACTION-2)

PD-L1 ≥ 1%


Reprinted from The Lancet, 390 (10111), Kang YK et al, Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial, 2461-2471, copyright 2017, with permission from Elsevier.

THIRD LINE ADVANCED OR METASTATIC OESOPHAGO-GASTRIC CANCERS

Avelumab trials


Bang YG et al, Ann Oncol 2018.

AVELUMAB VS CHEMO 3RD LINE GASTRIC/OGJ (JAVELIN GASTRIC 300)

$PD-L1 \ge 1\%$ versus PD-L1 < 1%

Bang YJ, et al. Annals of Oncology 2018; 29 (10): 2052–2060. By permission of Oxford University Press on behalf of the European Society for Medical Oncology.

TRIALS WITH ICI AND PD-L1 SUBGROUPS PRE-TREATED OESOPHAGO-GASTRIC CANCER PATIENTS

Trial	Tumour type	Interventions	N⁰ of patients	Main outcomes results	Pdl1 stratification Results (HR)*	Pdl1 good predictor of response?
KEYNOTE-061	Advanced/metastatic gastric or gastro- oesophageal adenocarcinoma	1 – Pembrolizumab 2- Paclitaxel	592 (1:1)	mOS (PD-L1 CPS ≥ 1) 1 – 9.1 months 2 - 8.3 months HR 0,82 (0,66-1,03) p=0.0421	PD-L1 CPS ≤ 1: 1,20 (0,89-1,63) PD-L1 CPS ≥ 1: 0,82 (0,66-1,03) PD-L1 CPS ≥ 10: 0,64 (0,41-1,02)	Yes?
KEYNOTE-181	Advanced/metastatic oesophageal or gastro- oesophageal junction squamous cell carcinoma or adenocarcinoma	1 – Pembrolizumab 2- Investigator-choice (Paclitaxel, Docetaxel, or Irinotecan)	628 (1:1)	$mOS (PD-L1 CPS \ge 10)$ $1 - 9.3 months$ $2 - 6.7 months$ HR 0.67, (0,50-0,89), p=0.0029	PD-L1 CPS any: 0,85 (0,72-1,01) PD-L1 CPS ≥ 10: 0,67 (0,50-0,89)	Yes?
ATTRACTION-2	Advanced/metastatic gastric or gastro- oesophageal junction adenocarcinoma	1 – Nivolumab 2 – Placebo	493 (2:1)	mOS (PD-L1 unselected) 1 – 5,26 months 2 - 4.14 months HR 0.63, (0.51-0.78), p<0.0001	PD-L1 ≥ 1%: 0.51 (0.21-1.25) PD-L1 < 1%: 0.72 (0.49-1.05)	See comments
JAVELIN GASTRIC 300	Advanced/metastatic gastric or gastro- oesophageal junction adenocarcinoma	1 – Avelumab 2- Investigator-choice (Paclitaxel, Irinotecan, or Best supportive care)	371 (1:1)	mOS (PD-L1 unselected) 1 – 4,6 months 2 – 5,0 months HR 1,1 (0.9-1.4), p=0.81	PD-L1 ≥ 1%: 0.94 (0.57-1.55) PD-L1 < 1%: 1.22 (0.91-1.64)	See comments

OESOPHAGO-GASTRIC CANCER AND PD-L1 EXPRESSION

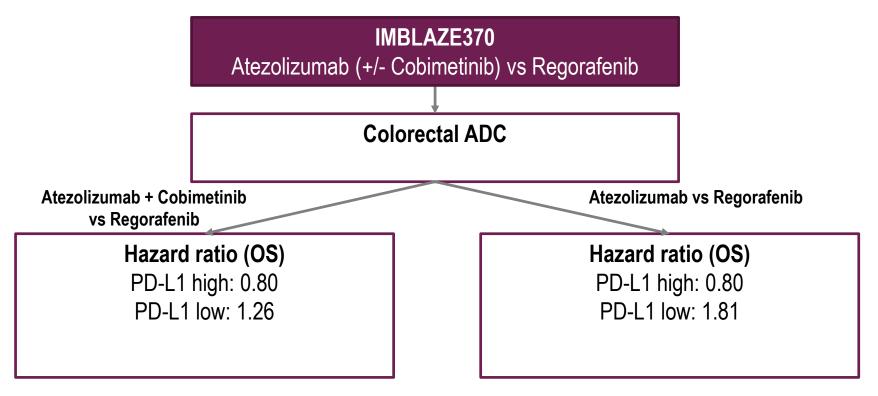
Implication for clinical practice and research

Main findings or subgroup analyses of all randomised phase III trials completed so far (KEYNOTE-061, KEYNOTE-062, KEYNOTE-181, ATTRACTION-2 and JAVELIN Gastro 300) suggest some consistent association between PD-L1 expression and increased benefit from immune checkpoint inhibitors.

Heterogeneity, however, exists between these trials in terms of assay for PD-L1 expression, PD-L1 scoring system, definition of PD-L1 positivity, timing of PD-L1 testing (retrospective vs prospective). Furthermore the small numbers of subgroup analyses and the lack of interaction tests do not allow drawing final conclusions.

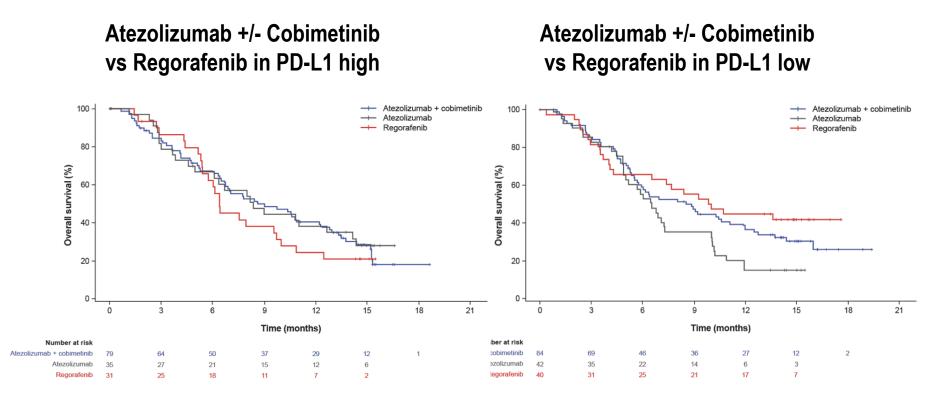
Important questions to be answered

- Which are the optimal PD-L1 scoring system and cut-off value for PD-L1 positivity?
- What is the impact of the site/timing of PD-L1 testing on PD-L1 status and its prediction of treatment benefit?
- What is, if any, the added value of PD-L1 testing in patients with MSI-H tumours or tumours with high TMB?
- Does the potential predictive power of PD-L1 expression change if immune checkpoint inhibitors are given in combination with chemotherapy or other agents?
- What are the most appropriate outcome measures/endpoints to assess the clinical benefit from immune checkpoint inhibitors?


PREVIOUSLY TREATED COLORECTAL CANCER

THIRD LINE ADVANCED OR METASTATIC COLORECTAL CANCER

Atezolizumab trials



Eng C et al, Lancet Oncol 2019. HR = Hazard ratio. Score for PD-L1 expression unknown.

ATEZOLIZUMAB +/- COBIMETINIB VS REGORAFENIB ≥ 3RD LINE -IMBLAZE370

Reprinted from The Lancet Oncol, 20(6), Eng C, et al, Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial, 849-861, Copyright 2019, with permission from Elsevier.

ESMO

TRIALS WITH ICI AND PD-L1 SUBGROUPS

Pre-treated colorectal cancer patients

Trial	Tumour type	Interventions	Nº of patients	Main outcomes results	Pdl1 stratification Results (HR)*	PDL1 good predictor of response?
IMblaze370	atic colorectal	1 – Atezolizumab + cobimetinib 2- Atezolizumab 3 - Regorafenib	363 (2:1:1)	mOS (PD-L1 any) 1 – 8.87 months 2 – 7.10 months 3 – 8.51 months HR (1 vs 3): 1,00 (0,73-1,38) p=0.99	1 vs 3 PD-L1 < 1%: 1,26 PD-L1 ≥ 1%: 0,80 2 vs 3 PD-L1 < 1%: 1,81 PD-L1 ≥ 1%: 0,80	Yes?
				HR (2 vs 3): 1,19 (0,83-1,71) p=0.34		

COLORECTAL CANCER AND PD-L1 EXPRESSION

Implication for clinical practice and research

The impact of PD-L1 expression on the clinical benefit from immune checkpoint inhibitors in colorectal cancer is difficult to assess.

Only one randomised phase III study has been completed so far (IMblaze370) and the results appear to suggest a possible association between PD-L1 expression and increased benefit from immune checkpoint inhibitors.

Important questions to be answered

- Can PD-L1 (high) expression identify a subgroup of MSS colorectal cancer patients who might be sensitive to immune checkpoint inhibitors? More data are needed
- Is PD-L1 testing of any value in patients with MSI-H tumours or tumours with high TMB?
- Which are the optimal PD-L1 scoring system and cut-off value for PD-L1 positivity?
- What is the impact of the site/timing of PD-L1 testing on PD-L1 status and its prediction of treatment benefit?

FINAL CONCLUSIONS

Implication for clinical practice and research

Although not a perfect biomarker, there is a trend for increased benefit with ICIs on enriched PDL1 solid tumours

But on Combination ICI + chemo pdl1 expression seems to be less relevant

There are still many uncertainties on the real value of PDL1 for clinical practice with ICIs in solid tumours

Important questions to be answered

- Why PDL1 expression has a high value in some studies and low in others?
- More data on cut-off value for PDL1 expression and how it changes over time?
- Combine PDL1 expression with other biomarkers (eg. TMB; specific neo-antigens, etc)?
- To identify best strategies with ICIs in low/negative PDL1 tumours?
- Are ICIs alone a better strategy for enriched PDL1 subgroups and combo ICI+chemo better on lower/negative PDL1 expression subgroups?

THANK YOU!

DISCLOSURES

- Ahmad Awada has reported Advisory role, research grants to his Institute, Speaker's role for Roche, Lilly, Amgen, Eisai, BMS, Pfizer, Novartis, MSD, Genomic Health, Ipsen, AstraZeneca, Bayer and Leo Pharma.
- Luis Castelo Branco has reported no conflict of interest
- Inês Pires da Silva has reported no conflict of interest
- Karima Oualla has reported no conflict of interest
- Irene Moreno has reported Speaker's fees: BMS
- Francesco Sclafani has reported no conflict of interest

DISCLOSURES

Emiliano Calvo has reported

- Honoraria or consultation fees from: Astellas, Novartis, Nanobiotix, Pfizer, Janssen-Cilag, GLG, PsiOxus Therapeutics, Merck, Medscape, BMS, Gilead, Seattle Genetics, Pierre Fabre, Boehringer Ingelheim, Cerulean Pharma, EUSA, Gehrmann Consulting, AstraZeneca, Roche Guidepoint, Servier, Celgene, Abbvie, Amcure, OncoDNA, Alkermes.
- 2. Leadership role: Director, Clinical Research, START Madrid, Director, Clinical Research, HM Hospitals Group, Madrid
- 3. Stocks or ownership: START, Oncoart Associated, International Cancer Consultants
- 4. Licensing fees or royalties: None
- 5. Direct research funding as project lead: Novartis, AstraZeneca, Beigene
- Institutional financial support from clinical trials: Abbvie, ACEO, Amcure, AMGEN, AstraZeneca, BMS, Cytomx, GSK, Genentech/Roche, H3, Incyte, Janssen, Kura, Lilly, Loxo, Nektar, Macrogenics, Menarini, Merck, Merus, Nanobiotix, Novartis, Pfizer, PharmaMar, Principia, PUMA, Sanofi, Taiho, Tesaro, BeiGene, Transgene, Takeda, Incyte, Innovio, MSD, PsiOxus, Seattle Genetics, Mersana, GSK, Daiichi, Nektar, Astellas, ORCA, Boston Therapeutics, Dynavax, DebioPharm, Boehringen Ingelheim, Regeneron, Millenium, Synthon, Spectrum, Rigontec
- 7. Non-financial interests: Scientific board at PsiOxus
- 8. Leadership in medical society: Founder and president, non-for-profit Foundation INTHEOS (Investigational Therapeutics in Oncological Sciences)
- 9. Memberships: SEOM, EORTC, ESMO, ASCO
- 10. Other relationships: HM Hospitals Group and START, Program of Early Phase Clinical Drug Development in Oncology, Employee: Medical Oncologist, Director, Clinical Research. Methods in Clinical Cancer Research (MCCR) Workshop, Zeist, Netherlands (Joint ECCO-AACR-EORTC-ESMO Workshop on Methods in Clinical Cancer, Research), Co-director.

