PRINCIPLES OR MEDICAL THERAPY FOR CANCER

Targeted therapies

Dr Christoph Oing
The Christie NHS Foundation Trust
Manchester, UK
CONFLICT OF INTEREST DISCLOSURE

Dr Christoph Oing

Personal financial interests

Institutional financial interests
- None

Non-financial interests / Leadership role medical societies non-remunerated
- Chairman “Junge DGHO” of the German Society of Hematology and Oncology (DGHO)
- ESMO YOC member

Other
- Travel and conference attendance: IPSEN (2017)
TARGETED THERAPY

Agenda

- HISTORY
- SMALL MOLECULES (NIBS)
- ANTIBodies (MABS)
- CELL THERAPY
CANCER TREATMENT

Taking aim...

- Targets DNA/RNA/Proteins
- Not tumour cell specific
- Hits replicating cells only
- Collateral damage / dose limiting toxicity
- Narrow therapeutic range
- Duration weeks - months

Chemotherapy

- Target specific
- Tumour specific
- Less toxic
- Better tolerable
- ’One size fits all‘ dosing
- Duration months – years
- Costly

Targeted therapy
TARGETED THERAPY
Cancer complexity

Hanahan & Weinberg, Cell 2011
TARGETED THERAPY
Identified drivers and potential targets

Garraway LA et al. JCO 2013
TARGETED THERAPY
Molecular therapy options

1. Growth factors and receptor tyrosine kinases
 EGFR, Her2, VEGF/R, c-kit

2. Extracellular matrix & angiogenesis
 VEGF/R, Integrins, hypoxia

3. Signal transduction pathways
 Ras, Raf, MAPK, MEK, ERK, AKT, PI3K

4. Cellular survival pathways
 Cycline-dependent kinases, mTOR, cGMP, COX-2, p53, Bcl-2, PARP

5. Proteasome
TARGETED THERAPY
Drivers vary between entities

Garraway LA et al. JCO 2013
TARGETED THERAPY

Tumour heterogeneity

Marusyk A et al. Nat Rev Cancer 2012
TARGETED THERAPY

Major obstacles

- Driver identification (low frequencies)
- Intratumoural heterogeneity
- Escape pathways
- Biomarker abundance / assay reliability
- Lack of target specificity and shared target structures
- Toxicity due to "off target / tumour" effects
- Cost-effectiveness and accessability
- Lack of high-level evidence (Phase II early breakthrough)
SMALL MOLECULES
TARGETED THERAPY

Breakthrough: Imatinib in CML

- Philadelphia chromosome + CML, chronic phase
- Different options now available
 - Imatinib
 - Dasatinib
 - Nilotinib

\[\text{Saglio et al., NEJM 2010}\]
TARGETED THERAPY
Targeting BRAF V600E in stage IV melanoma

- ~50% of melanomas harbour BRAF\textsubscript{mut} (90% V660E)
- Chemotherapy with limited activity

BRAFi mono
- RR 50-60%
- DFS 7-9 mos
- OS 13-18 mos

Comined BRAF/MEKi
- RR 69-75%
- DFS 11-15 mos
- OS 25 mos
TARGETED THERAPY

EGFR TKI inhibitors in NSCLC

Pao W et al. Nat Rev Cancer 2010
TARGETED THERAPY

Specificity of TKIs

<table>
<thead>
<tr>
<th>Agent</th>
<th>VEGFR1</th>
<th>VEGFR 2</th>
<th>VEGFR 3</th>
<th>PDGFR</th>
<th>FGFR1/3</th>
<th>EGFR</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunitinib</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>KIT, RET</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>KIT, RAF</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>RET</td>
</tr>
<tr>
<td>Cediranib</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>KIT</td>
</tr>
<tr>
<td>Nintedanib</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>RET</td>
</tr>
</tbody>
</table>

MONOCLONAL ANTIBODIES
TARGETED THERAPY

Antibody structure & nomenclature

<table>
<thead>
<tr>
<th>Source</th>
<th>Ending</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murine</td>
<td>-omab</td>
<td>Ibritumomab</td>
</tr>
<tr>
<td>Chimeric</td>
<td>-ximab</td>
<td>Rituximab</td>
</tr>
<tr>
<td>Humanised</td>
<td>-zumab</td>
<td>Bevacizumab</td>
</tr>
<tr>
<td>Fully humanised</td>
<td>-umab</td>
<td>Panitumumab</td>
</tr>
</tbody>
</table>
TARGETED THERAPY

Rituximab in DLBCL

- Targets CD20 on all B-cells
- First breakthrough with antibody treatment
- Approved for DLBCL, FL, CLL
- Adopted for WHO Essential Medicines List 2015

Salles et al., Adv Ther 2017
TARGETED THERAPY

Targeting Her2+ breast cancer

- Metastatic breast cancer, 1st line
- Doce/Trastuzumab vs. Doce/Trastuzumab/Pertuzumab
- OS 56.5 vs. 40.8 months
- Duration of response + 7.7 months

TARGETED THERAPY
Targeting PDGFRα in soft tissue sarcomas

Anti-PDGFRα-mab Olaratumab in Soft tissue sarcomas

- Phase III ANNOUNCE trial negative
- Reasons yet unclear
- Not all successful phase II studies translate into positive phase III results
- Early access costly and potentially NOT beneficial

→ Accelerated FDA approval
TARGETED THERAPY

Antibody-drug conjugates

- Highly cytotoxic
- Stable in circulation
- Tumour tissue specific

Sharma et al., Nat Rev Drug Discov 2006
TARGETED THERAPY

Brentuximab-vedotin in Hodgkin’s lymphoma

- Standard of care for r/r Hodgkin’s lymphoma
- Combinations with chemotherapy also highly effective in the salvage setting
- Currently tested in 1st-line treatment BrECADD (HD21)
- Limited activity in CD30+ r/r testicular cancers

Younes et al., J Clin Oncol 2012
TARGETED THERAPY
Modern immunotherapy approaches

Immune checkpoint blockade
- Enhanced priming *(CTLA-4i)*
- Rejuvenation of exhausted T-cells *(PD-1/PD-L1i)*

Adoptive cell transfer
- TIL expansion
- TCR redirection
- CAR-T cell engineering

Knochelmann et al., Front Immunol 2018
TARGETED THERAPY

Tumour immunity

1. Release of cancer cell antigens (cancer cell death)
2. Cancer antigen presentation (dendritic cells/APCs)
3. Priming and activation (APCs & T cells)
4. Trafficking of T cells to tumors (CTLs)
5. Infiltration of T cells into tumors (CTLs, endothelial cells)
6. Recognition of cancer cells by T cells (CTLs, cancer cells)
7. Killing of cancer cells (Immune and cancer cells)

CTLA-4i
CAR-T
PD-1i/ PD-L1i

Chen & Mellman, Cell 2013
TARGETED THERAPY
PD-1/PD-L1 checkpoint blockade

CTLA-4i
- Ipilimumab
- Tremelimumab

PD-1i
- Nivolumab
- Pembrolizumab
- Avelumab

PD-L1i
- Atezolizumab
- Durvalumab
TARGETED THERAPY

Surrogate PD-L1 expression

But also PD-L1 negative tumours respond to PD-1-blockade!
TARGETED THERAPY

Predictors of response – MMR deficiency

FDA approval for all MSI high / MMR solid tumours granted in 2016

Le et al., NEJM 2015
TARGETED THERAPY

Predictors of response – TMB

Higher TMB \rightarrow Neoantigen load \uparrow \rightarrow Immunogenicity \uparrow \rightarrow IO responses \uparrow
TARGETED THERAPY

Immune-related side effects

- Timing of onset varies remarkably (even after end of treatment)
- Fatal events possible (pneumonitis / hepatitis / colitis / myocarditis / etc.)

Neurologic
- Unilateral or bilateral muscle weakness
- Sensoric disorders
- Paraesthesia

Pulmonary
- Pneumonitis

Hepatic
- Elevated liver enzyme values (AST, ALT, total bilirubin)

Gastrointestinal
- Diarrhoea
- Abdominal pain
- Bloody stools
- Perforation
- Peritonism
- Ileus

Endocrine
- Fatigue
- Headache
- Psychic disorders
- Abdominal pain
- Changed bowel movement habits
- Hypotension
- Thyroiditis
- Hypophysitis

Renal
- Glomerulonephritis
- Creatinine elevation

Dermatologic
- Pruritus
- Rash

Other
- Uveitis, Iritis, Conjunctivitis
- Amylase / Lipase elevation
TARGETED THERAPY

Side effect management

Depending on CTCAE severity and kind of side effect

- Immunosuppression
- Treatment delay or cessation
TARGETED THERAPY

Enhance IO activity via combinations

- Higher activity \rightarrow ORR 58% vs. 44% vs. 19%
- Also higher CTCAE grade III-IV toxicity

Wolchok et al., NEJM 2017
TARGETED THERAPY

Reality of Immunotherapy 2019

- Activity in ~20 tumour entities
- Response rates for monotherapy typically 10% - 30%
- Cost: anti-PD-1 ~ € 150k p/a
 anti-CTLA-4 ~ € 120k p/a
- Duration of treatment – unknown (up to 2 years and more)
- Duration of response – unknown (ongoing responses >7 years)
TARGETED THERAPY

Open questions in immunotherapy

- Hyperprogression
- Treatment duration
- Cost-effectiveness
- Optimal biomarkers for response prediction (PD-L1 expression, MSI, TMB, …)
- Combination therapy partners
- Turn immunologically cold tumours hot
CELL THERAPY
TARGETED THERAPY
Modern immunotherapy approaches

Adoptive cell transfer
- TIL expansion
- TCR redirection
- CAR-T cell engineering

Immune checkpoint blockade
- Enhanced priming (CTLA-4)
- Rejuvenation of exhausted T-cells (PD-1/PD-L1)

Knochelmann et al., Front Immunol 2018
TARGETED THERAPY
Chimeric antigen receptor (CAR)

1. Gen
2. Gen
3. Gen

https://www.slideshare.net/spa718/4-keiya-ozawa
TARGETED THERAPY

CAR-T therapy cycle

3-4 hrs

Remove blood from patient to get T cells

30 mins

CAR T cells bind to cancer cells and kill them

3-4 weeks

Make CAR T cells in the lab

Insert gene for CAR

Enrichment & activation

Lentiviral transduction

Expansion of CAR-expressing T-cells

Grow millions of CAR T cells

Isolation of cell product

© 2017 Terese Winslow LLC
U.S. Govt. has certain rights
TARGETED THERAPY
CAR-Ts against CD19+ lymphomas

https://www.slideshare.net/spa718/4-keiya-ozawa
TARGETED THERAPY

EMA-approved CAR-T therapies

Tisagenlecleucel (Kymria®)
Anti-CD-19 construct
B-cell acute lymphoblastic leukemia (ALL)
r/r diffuse large B-cell lymphoma
$ 475,000

Axicabtagene ciloleucel (Yescarta®)
Anti-CD-19 construct
r/r B-cell non-Hodgkin lymphoma
$ 373,000

Maude et al., NEJM 2018

ELIANA
TARGETED THERAPY

Immunotherapy obstacles

- How to best select?
- How to improve activity?
- How to afford?
- How to access?
- At what price?
- How much is a cure worth?
TARGETED THERAPY

Reality of targeted treatment approaches

Clinical characteristics
- r/r solid cancer
- Targeted biopsy
- 11 molecular targeting agents

741 screened

293 enrolled

195 randomly assigned

99 treated

96 physician’s choice

Pathway alterations
- Hormone receptor (N=40)
- PI3K/AKT/mTOR (N=46)
- RAF/MEK (N=13)

LeTourneau et al., Lancet Oncol 2015