The Management of Localized Bile Duct Cancer: Are there any Indications for Radiation Therapy?

Laura Dawson MD, FASTRO
Radiation Medicine Program,
Princess Margaret Cancer Centre,
University of Toronto,
Toronto, Ontario
Disclosures

• Licensing agreement from Raysearch paid to institution
• Research funding from Merck paid to institution
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
Strategies to Deliver Therapeutic Dose Radiation Therapy

- External beam radiotherapy (EBRT)
 - Conformal radiotherapy (CRT)
 - Intensity modulated radiation therapy (IMRT)
 - Stereotactic body radiation therapy (SBRT)
 - Proton radiation therapy
 - Heavy ion radiation therapy (Carbon ions)

- Brachytherapy
 - Interstitial
 - Interluminal

- Intra-operative RT (IORT)
 - Mobile electron unit

- Radioisotopes
 - Iodine 131 Lipiodol
 - Yttrium 90 microspheres
Many Advances in Radiation Therapy

→ improved outcomes for cholangiocarcinoma and other upper GI cancers

- SBRT, hypofractionation
- MR (and other image) guided RT
- Motion management
- Adaptive RT (personalized)
- Artificial intelligence/ automation
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
Cholangiocarcinoma

- Most historical RT experience is with fractionated RT +/- brachytherapy
- SBRT/hypofractionation (without stents) may precipitate biliary obstruction, late strictures, if no stent

Peripheral IHC most well suited for SBRT

Extra-hepatic better suited for standard or hyper-fractionation

Biliary Tract Cancers

- Right hepatic duct
- Left hepatic duct
- Common hepatic duct
- Cystic duct
- Common bile duct
- Gall bladder
- Pancreatic duct
- Duodenum
- Pancreas
- Sphincter of Oddi
- Bile

- Intrahepatic CCA
- Perihilar CCA
- Extrahepatic CCA

- N. America: 3 / 100,000
- Japan: 20 / 100,000
- Common: N India, E Europe, S America, Asia
Role of Radiation Therapy

- No level 1 evidence for radiation therapy (RT)
 - Single institution or multi-centre retrospective reviews
 - Large databases with limited patient details
 - No comparative, prospective trials
 - Heterogeneity (IHC, hilar, distal bile duct, gallbladder cancer)

- Unlike pancreatic cancer, extrahepatic cholangiocarcinoma has a dominant local-regional pattern of failure

- Conventional RT, hyperfractionated and hypofractionated RT appear to have less toxicity compared to SBRT

- Even without a proven survival benefit, there is rationale to maintain local control to preserve biliary function and quality of life

- When RT is used, recommendation is to sequence RT post systemic therapy

Extrahepatic Cholangiocarcinoma

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median survival (95% CI)</th>
<th>Patients (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery plus RT</td>
<td>16.00 (15.00–17.00)</td>
<td>701</td>
</tr>
<tr>
<td>Surgery</td>
<td>9.00 (9.00–11.00)</td>
<td>1372</td>
</tr>
<tr>
<td>RT</td>
<td>9.00 (9.00–10.00)</td>
<td>475</td>
</tr>
<tr>
<td>No surgery or RT</td>
<td>4.00 (3.00–4.00)</td>
<td>2210</td>
</tr>
</tbody>
</table>

Intrahepatic Cholangiocarcinoma

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median survival (95% CI)</th>
<th>N</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery with radiation</td>
<td>11.00 (9.00–13.00)</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>Surgery alone</td>
<td>6.00 (5.00–6.00)</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>Radiation alone</td>
<td>7.00 (6.00–8.00)</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>No treatment</td>
<td>3.00</td>
<td>2209</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

University of Michigan Conformal RT: unresectable

Patients

Metastases 47 Med survival 17.2 months
Intrahepatic cholangiocarcinoma 46 13.3 months
HCC 35 15.2 months

- 1.5 Gy bid (individualized, max 90Gy)
- Concurrent hepatic arterial FUdR

- Median tumor size 6 cm
- Local control at 2 years – 90%

Ben Josef et al., JCO, 2005
SBRT as definitive therapy for cholangiocarcinoma.

<table>
<thead>
<tr>
<th>Author</th>
<th>Design</th>
<th>Location</th>
<th>Number of patients</th>
<th>RT dose scheme ± Chemo-therapy</th>
<th>2 y local control</th>
<th>2 y/median survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tse [68]</td>
<td>Phase I</td>
<td>Intra-hepatic</td>
<td>10</td>
<td>6 × 4–9 Gy No chemo</td>
<td>65% at 1 y</td>
<td>58% at 1 y 15 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momm [65]</td>
<td>Retrospective</td>
<td>Perihilar</td>
<td>13</td>
<td>32–56 Gy in 3–4 Gy per fraction 6/13 Chemo</td>
<td>Not reported</td>
<td>67% 23.6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kopek [64]</td>
<td>Retrospective</td>
<td>Intra-hepatic</td>
<td>1</td>
<td>3 × 15 Gy (at isocenter) No chemo</td>
<td>84% at 1 y</td>
<td>15% 10.6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perihilar</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polistina [66]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barney [63]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jung [62]</td>
<td>Retrospective</td>
<td>Extra-hepatic:</td>
<td>33</td>
<td>53 SBRT 30–60 Gy in 3–5 fractions 5 SBRT boost 1 × 15–18 Gy No chemo</td>
<td>72%</td>
<td>20% 10 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extra-hepatic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lymph nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahadevan [61]</td>
<td>Retrospective</td>
<td>Intra-hepatic</td>
<td>31</td>
<td>10–45 Gy in 3–5 fractions 18 chemo</td>
<td>79%</td>
<td>31% 17 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perihilar</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intra- + extra-hepatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tao [67]</td>
<td>Retrospective</td>
<td>Intra-hepatic</td>
<td>79</td>
<td>50.4–75 Gy in 15–30 fractions 75 chemo</td>
<td>BED ≤ 80.5 Gy 3y 45%</td>
<td>61% 30 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increased risk of acute and late biliary toxicity post SBRT

A. Méndez Romero, R.A. de Man / Best Practice & Research Clinical Gastroenterology 30 (2016) 603–616
IHC Retrospective Study: MD Anderson/MGH

- 79 inoperable IHC patients
 - Median size: 7.9 cm
 - 58% node positive
 - 20% metastatic disease
 - Child Pugh A 80%

- Doses assigned by proximity to critical structures
- Standard or modestly hypofractionated RT
- Median BED=80.5 Gy
 - 45 Gy covering PTV, up to 100 Gy to central GTV simultaneous boost
 - RT dose: 67.5 GyE (peripheral) and 58.05 GyE (central) in 15 fractions

- Median f/u: 24 months for all pts (range 4-133)

Tao and Crane JCO 2015
Local Control and Survival

RT dose only significant factor

- 48% pts had local PD
- LC significantly improved with higher doses (>95Gy BED)
- 3-yr LC 78% vs 45%

- Med survival 30 months
- OS also significantly improved
- 3-yr OS 73% vs 38%
- Median OS: not reached vs 27 mo.

Tao and Crane JCO 2015
Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma

- Proton radiation: 58 Gy (central), 67.5 Gy (peripheral) in 15 fractions
- 92 patients (44 HCC, 37 IHC, 2 mixed)
- Median follow-up 19.5 months

- Local control at 2 years:
 - HCC 95%
 - IHC 94%

- Overall survival at 2 years:
 - HCC 63%
 - IHC 46%
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
Mayo Transplant Protocol for Hilar tumors (Klatskin)

- Perihilar cholangiocarcinoma
 - 3 cm or less
 - Diagnosed by cytology (includes FISH), or CA19-9 >100 + mass + malignant appearing stricture
 - Node negative, no extrahepatic disease

- Staging by CT Liver, US, and bone scan, EUS nodal biopsy if indicated

- Neoadjuvant chemo (5Fu/Xeloda) + concurrent EBRT (45 Gy, 1.5 Gy bid)

- Intra-biliary brachytherapy boost (20-30 Gy LDR equivalent, now w HDR)
 - 4 Gy x 4, (1 cm depth, potentially tighter near bowel)

- Staging laparoscopy

- Continue maintenance chemotherapy until transplant
Radiation Therapy

External beam RT
- 4,500 cGy in 30 fractions (1.5 Gy given bid over 3 weeks)
 - Using MRI and CT liver fused to planning CT; target includes nodes
- PVI 5FU or Xeloda delivered concurrently

Brachytherapy
- Catheters placed endoscopically with cholangiogram to assist
- Original protocol utilized 20-30 Gy LDR equivalent (24-48 hrs)
- Most sites using HDR
 - 4 Gy x 4 (Mayo), or 5 Gy x 3 (CCF) over 2 days prescribed to 1 cm
Orthotopic Liver Transplant (OLT)

- Results:
 - 38 of 71 patients underwent OLT
 - No residual tumor in 16 of 38 explanted livers (42%)
 - 5 yr OS: 82% after OLT vs. 21% after resection (p = 0.022)
 - Recurrence at 5 years: 12% after OLT vs. 58% after resection.

- Updated results (Rosen, n=148)
 - 5 yr OS 55% (all pts)
 - 5 yrs OS 71% (transplanted)
Multi-centre series: Orthotopic Liver Transplant

- Analysis of 287 pts treated on pre-transplant protocols at 12 centers from 1993 – 2010
- Results:
 - 71 patients dropped off transplant list.
 - 117 (54%) of the explanted livers either had no tumor visible on pathology or grade was not attainable.
 - ITT survival at 5 yrs post transplant was 53%
 - ITT RFS at 5 years post transplant was 65%
- Caveat: 193 patients were from one center

Pathologic CR or non-cancer upfront?
Princess Margaret Hilar Cancer Protocol

- 45 Gy in 1.5 Gy twice daily to clinical target volume and nodes
- 75 Gy total in 1.5 Gy twice daily to primary tumor
- Gem/Cisplatin systemic therapy
- Goal: external beam RT: attempt to reduce late biliary toxicity
Princess Margaret Klatskin Protocol

- Medium survival from day 1: 18.8 months (including drop off)
- 11/18 patients dropped off
 - Metastases and/or nodes involved at laparotomy
- 56% survival post transplant (in transplanted patients)
- Audit revealed that some patients had tumors > 3 cm
- Protocol amended to:
 - Decrease delays to start of treatment
 - Strict inclusion criteria: tumors < 3 cm
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
Extrahepatic cholangiocarcinoma: Outcomes after Adjuvant Radiation Therapy

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Patient (n)</th>
<th>Treatment</th>
<th>5-y OS rate (%); median (mo)</th>
<th>5-y LRC rate (%)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tororoki et al., (20)</td>
<td>19</td>
<td>Surgery alone</td>
<td>13.5; 10</td>
<td>31.3</td>
<td>Proximal bile duct tumor</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Surgery plus RT</td>
<td>33.9; 32</td>
<td>79.7</td>
<td></td>
</tr>
<tr>
<td>Gerhard et al., (24)</td>
<td>15</td>
<td>Surgery alone</td>
<td>11; 8</td>
<td>—</td>
<td>Proximal bile duct tumor</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Surgery plus RT</td>
<td>24; 30</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Serafini et al., (18)</td>
<td>28</td>
<td>Surgery alone</td>
<td>—; 29</td>
<td>—</td>
<td>Benefit only in distal tumors</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Surgery plus CRT</td>
<td>—; 42</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Hughes et al., (14)</td>
<td>30</td>
<td>Surgery alone</td>
<td>27; 22</td>
<td>—</td>
<td>Distal bile duct tumor</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Surgery plus CRT</td>
<td>35; 36.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Bhatia et al., (23)</td>
<td>30</td>
<td>Surgery alone</td>
<td>11; 19.2</td>
<td>—</td>
<td>Ampullary tumor</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Surgery plus CRT</td>
<td>48; 40.8</td>
<td>—</td>
<td>From ampullary to proximal bile duct tumor</td>
</tr>
<tr>
<td>Present study</td>
<td>53</td>
<td>Surgery alone</td>
<td>28.2; 27.9</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>Surgery plus CRT</td>
<td>36.5; 36.4</td>
<td>58.5</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: RT = radiotherapy; CRT = chemoradiotherapy; other abbreviations as in Table 2.
SWOG S0809 study of Adjuvant Therapy

- Single arm phase II study
- Extrahepatic cholangiocarcinoma or gallbladder cancer
- Resected pT2-4, or node (+), or R1, M0
- Gem/Capecitabine x 4 followed by chemo-RT
- Benefit for R1 patients

Table 3. Pattern of First Relapse

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>EHCC</th>
<th>Distal (n = 38)</th>
<th>Hilar (n = 13)</th>
<th>GBCA (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Local only</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Local plus distant</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Distant only</td>
<td>11</td>
<td>29</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>50</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>NOTE. Three patients for whom complete data were not available were excluded. Abbreviations: EHCC, extranepatic cholangiocarcinoma; GBCA, gallbladder carcinoma.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Local failure (LF) with RT: 11/51 (21%)
- Historical LF controls w surgery alone: (35-70%)
RT In BilCap Era?

Adjuvant Therapy for Resected Biliary Tract Cancer: ASCO Clinical Practice Guideline

Rachna T. Shroff, MD1; Erin B. Kennedy, MHSc2; Melinda Bachini3; Tanios Bekaii-Saab, MD4; Christopher Crane, MD5; Julien Edeline, MD, PhD6; Anthony El-Khoueiry, MD7; Mary Feng, MD8; Matthew H.G. Katz, MD9; John Primrose, MD10; Heloisa P. Soares, MD, PhD11; Juan Valle, MD12; and Shishir K. Maithel, MD13

- 6 months adjuvant capecitabine recommended
- Adjuvant chemo-RT recommended post capecitabine, for R1 extrahepatic or R1 gallbladder ca
- Need to consider goals of care, co-morbidities, competing risks, performance status
Outline: Cholangiocarcinoma Radiation Therapy

- Radiotherapy
- Cholangiocarcinoma (intrahepatic, extrahepatic)
- Perihilar cholangiocarcinoma (Klatskin’s Tumor)
- Adjuvant radiation therapy
- Selection of patients
How to select patients best suited for RT?

- Improved biomarkers needed for selection of patients for RT
- KRAS mutations predict for RT resistance in preclinical models
- Clinical data supports poor radiation responses if KRAS mutation, and improved local control if KRAS wild type
 - colon cancer, other solid malignancies
- Recommend including RT in ‘Batch’ trials that link mutations to treatment, in prospective studies
- Anatomical and patient considerations: liver function, enough planned spared liver, performance status, competing risks
Conclusions

- Need for higher level evidence for RT in cholangiocarcinoma
- The risk and significance of local failure provides rationale for RT
 - Longer fractionations (CRT, 15 fractions, 1.5 Gy bid) appear safer than SBRT
- Most cholangiocarcinomas are KRAS WT, suggesting better RT responsiveness compared to pancreatic cancer
- High dose RT can control unresectable IHC and should be considered post systemic therapy
- RT post surgery improves local control, especially for R1 resection
- Recommend systemic therapy prior to RT, if RT recommended
Acknowledgements

Jelena Lukovic
Andrew Bang
Ashwathi Matthew
Pablo Múnoz
Aisling Barry
Andrew McPartlin
Moises Russos
Monique Youl
Carol Haddad
Alexis Bujold
Anand Swaminath
Charles Cho
Mark Lee
Regina Tse
Maria Hawkins
John Kim
Anthony Brade
Rob Dinniwell
Jim Brierley
Rebecca Wong
Jolie Ringash
Bernard Cummings

Kristy Brock
Mike Veleg
Tim Craig
Jean Pierre Bissonnette
David Jaffray
Doug Moseley
Catherine Coolens
Mike Sharpe
Patricia Lindsay
Tom Purdie
Teo Stanescu
Jeff Winter
Kawalpreet Singh
Debbie Tsuji
Andrea Marshall
Alana Pellizzani

Jennifer Knox

PMH liver tumour boards
All patients & referring MDs

Theodore Hong, MGH
Edgar Ben Josef, U Penn