Can we increase Immunogenicity in MSS Metastatic Colorectal Cancer (mCRC)?

Guillem Argilés, MD
Clinical Investigator
Gastrointestinal Malignancies Program
Early Drug Development Program
Vall d’Hebron University Hospital
Vall d’Hebron Institute of Oncology (VHIO)
DISCLOSURE SLIDE:

- Personal financial interests, I received honoraria for advisory role, travel grants, research grants (past 5 years):
 Hoffman La-Roche, Bristol Myers Squibb, Bayer, Servier, Amgen, Merck Serono,

- Institutional financial interests, my institution received honoraria due to my investigator contribution in clinical trials from:
 Bayer, Servier, Novartis, Boehringer Ingelheim, Boston Pharmaceuticals, Hoffman la Roche, Genentech
Learning objectives:

• Understand the immune-biology of non-MSI colorectal cancer.

• Review & discuss the results of the recently reported initiatives to increase immunogenicity on this patient population.

• Know the rational behind the different strategies under development.
MSI/MSS: Does a lower Tumor Mutation Burden (TMB) make a difference?

CRC Samples ordered according TMB

TILs

Benefit from pembrolizumab

Adapted from TCGA Nat 2012 – Adapted from LE D NEJM 2015
Discrepancies between MTB and RR seen with immunotherapy

Tumor Mutational Burden and ORR Correlation with Anti–PD-1 axis cross-tumor type

MSS mCRC has a immune-suppressant biology:

- **WNT signalling**
 - Dickkopf 1 (DKK1)
 - LRP5
 - FZD10
 - AXIN2
 - APC
 - C/EBPβ
 - TCF7

- **TGF-β signalling**
 - TGF-β
 - Activin

- **PI3K signalling**
 - AKT2
 - PI3Kγ

- **RTK-RAS signalling**
 - EGFR

- **P53 signalling**
 - ATM

References:
- TCGA, Nat 2012
- Fearon, Cell 2000
- Walther, Nat Rev Can 2009
Wnt pathway activation leads to dendritic cell exclusion from the tumor:

Melanoma

Localized CRC

mCRC

MAPK-PI3K Pathway Activation impairs antigen presentation:

MHC class 1

CD8+ T cells per tumour cell

Proportion of CD8+ cells with low PD-1 expression

Proportion of IFNγ-producing CD8+ T cells

Ebert et al. Immunity 2016 – Bendell J ASCO 2015
TGF-Beta activation inhibits anti-cellular immunity and causes unspecific inflammation:

Bladder Cancer:

CRC:

Taurello Nat 2018 – Mariathasan Nat 2018
Need for immune-biology biomarkers:

First generation immune-biomarkers

- Tumor mutation burden
- Markers of hot tumors
- PD-L1

Second generation immune-biomarkers:

- Gene signatures

[Diagram showing relationships between biomarkers and tumor characteristics]
Transcriptomic classification of mCRC

CMS1
- MSI Immune
- 14%
- MSI, CIMP high
- Hypermutation
- SCNA high
- BRAF mutations
- Immune infiltration and activation
- Worse survival after relapse

CMS2
- Canonical
- 37%
- SCNA low, CIMP low
- WNT and MYC activation
- Better survival after relapse

CMS3
- Metabolic
- 13%
- Mixed MSI status
- Metabolic deregulation

CMS4
- Mesenchymal
- 23%
- SCN high
- Stromal infiltration
- TGF beta activation
- Worse relapse-free and overall survival

Disclaimer for CMS:

- CMS classifier was built to describe the different biological backgrounds of colorectal cancer.

- The classification can not be used to take therapeutic decisions.

- For the purpose of this talk I am going to use CMS to depict the different CRC populations at the molecular level and propose rational-based therapeutic approaches.
Transcriptomic classification of mCRC

- **CMS1**
 - MSI Immune
 - 14%
- **CMS2**
 - Canonical
 - 37%
- **CMS3**
 - Metabolic
 - 13%
- **CMS4**
 - Mesenchymal
 - 23%

<table>
<thead>
<tr>
<th>Feature</th>
<th>CMS1</th>
<th>CMS2</th>
<th>CMS3</th>
<th>CMS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSI, CIMP high</td>
<td>14%</td>
<td>37%</td>
<td>13%</td>
<td>23%</td>
</tr>
<tr>
<td>Hypermethylation</td>
<td></td>
<td>SCNA high</td>
<td>Mixed MSI status</td>
<td>SCN high</td>
</tr>
<tr>
<td>SCNA low, CIMP low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF mutations</td>
<td></td>
<td>WNT and MYC activation</td>
<td>Metabolic deregulation</td>
<td>TGF beta activation, Metastasis</td>
</tr>
</tbody>
</table>
| IMMUNE INFILTRATION AND ACTIVATION | Worse survival after relapse | Better survival after relapse | Worse relapse-free and overall survival | **CMS4**

CMS4
- **CMS4**
 - MSI LIKE
 - 23%
 - T cells chemotaxis and activation
 - T cells specific inhibition
 - Myeloid cells chemotaxis
 - Angiogenesis
 - Immunosuppression
 - Complement
 - Tertiary lymphoid structures
 - Major Histocompatibility Complex

CMS3
- **CMS3**
 - Metabolic
 - 13%
 - TGF beta activation
 - Angiogenesis

CMS2
- **CMS2**
 - Canonical
 - 37%
 - WNT and MYC activation
 - Metabolic deregulation

CMS1
- **CMS1**
 - MSI Immune
 - 14%
 - T cells chemotaxis and activation
 - T cells specific inhibition
 - Myeloid cells chemotaxis

BRCAness
- BRCA mut.
- BRCAness.
- ARID 1

Therapeutic alternatives based on molecular background:

- MoTriColor Clinical Trial 3: Atezolizumab + Bev in CMS1 pts.
- Anti-CTLA4- Anti-PD1 +/- Radiotherapy

CMS1:
- MSI 10%
- CMS1 non MSI 5%

CMS2:
- Block Wnt Pathway
- Allow Dendritic Cell infiltration
- Foster T-Cell anti-tumor reactivity
- Wnt-inhibitors + anti-PD1

CMS3:
- Block MAPK/PI3K pathway
- Increase MHC-Class 1 expression
- Foster T-Cell anti-tumor reactivity
- Mek inh + anti-PD1 ?
- Natural killer engaging therapies

CMS4:
- Block TGF-beta Pathway in CMS 4 mCRC
- Change the Inflammatory Microenvironment to a TH1 Immune response
- Foster T-Cell infiltration
- Sensitivity to Immune-checkpoint inh.
- TGF-beta inh + anti-PD-1

CMS1: CMS2: CMS3: CMS4:
Transversal strategies:

- Chemo or RT + Immune-Checkpoint Inhibitors (ICI)
- Tyrosine-Kinase Inh. + ICI combos
- ICI + ICI combos
- Metabolic disruptors + ICI
- T-Cell engaging bi-Specific Antibodies
- Personalized Cancer Vaccines
- Adoptive T-cell Therapy
 - TIL-Therapy
 - CAR-T Cells

Regorafenib – Nivolumab: REGONIVO trial

Rego 80 – Nivo 3mg/kg

Figure 1. Duration of Treatment

Adverse event, N (%) | All N = 50 | Regorafenib 80 mg N = 22 | Regorafenib 120 mg N = 25 | Regorafenib 160 mg N = 3

All grades	Grade23								
All events	50(100)	20(40)	22(100)	10(45)	25(100)	11(44)	3(100)	3(100)	
Palmar-plantar erythrodysesthesia	8(16)	5(10)	13(59)	1(9)	0(0)	20(80)	5(20)	2(67)	1(33)
Hypertension	24(48)	2(4)	10(46)	2(9)	14(56)	6(24)	0(0)	0(0)	0(0)
Fatigue	23(46)	0(0)	10(46)	0(0)	12(48)	0(0)	1(33)	0(0)	0(0)
Rash	21(42)	6(12)	8(36)	0(0)	11(44)	9(20)	2(67)	1(33)	
Fever	20(40)	0(0)	8(36)	0(0)	11(44)	0(0)	1(33)	0(0)	0(0)
Proteinuria	19(39)	6(12)	5(23)	2(9)	8(32)	3(12)	2(67)	1(33)	
Liver dysfunction	14(28)	3(6)	5(23)	0(0)	8(32)	1(4)	1(33)	0(0)	0(0)
Oral mucositis	11(22)	0(0)	3(14)	0(0)	6(24)	0(0)	2(67)	1(33)	
Diarrhea	11(22)	1(2)	5(23)	0(0)	4(16)	1(4)	2(67)	0(0)	0(0)
Decreased appetite	11(22)	0(0)	6(27)	0(0)	5(20)	0(0)	0(0)	0(0)	0(0)
Hypothyroidism	6(12)	0(0)	4(18)	0(0)	2(8)	0(0)	0(0)	0(0)	0(0)
Hypothyroidism	6(12)	0(0)	4(18)	0(0)	2(8)	0(0)	0(0)	0(0)	0(0)
Hoarseness	5(10)	0(0)	4(18)	0(0)	1(4)	0(0)	0(0)	0(0)	0(0)
Platelet count decreased	5(10)	1(2)	0(0)	0(0)	4(16)	1(4)	1(33)	0(0)	0(0)

One treatment-related death was observed due to diabetic ketoacidosis

Fukuoka S, ASCO 2019- Hara WGI 2019
Biology behind REGONIVO:

Regorafenib reduced Tumor Associated Macrophages (M2) and induced M1 macrophages

Hoff S, et al. ESMO Annual Meeting 2017 - Fukuoka ASCO 2019
Open questions after REGONIVO:

• Can this impressive data be extrapolated to western populations?
 • There are trials ongoing exploring this combination in Europe and US.

• Why elimination of tumor associated macrophages and T-REGs is so important in mCRC?
 • They have never been described as important factors in mCRC immune-microenvironment.
Anti-CTLA-4 + Anti-PD1 combination:

CCTG CO.26 study schema:

Patients with advanced CRC refractory to all available therapy

Randomize

Durvalumab: 1500 mg IV q 28 days
Tremelimumab: 75 mg IV q 28 days, cycles 1-4
+ Best Supportive Care

Primary endpoint:
- OS

Secondary endpoints:
- PFS
- Safety and toxicity
- ORR

Tertiary endpoints:
- QoL
- Correlative studies

Sample Size: 180

Stratify:
- ECOG (0, 1)
- Side of tumor

Exploratory analysis: ctDNA sampling for TMB calculation

Results: overall survival

Median BSC = 4.1 months; 90% CI (3.3-6.0)
Median Durva+Treme = 6.6 months; 90% CI (6.0-7.4)
Stratified Hazard Ratio = 0.72; 90% CI (0.54-0.97); p=0.07
Unadjusted HR = 0.70; 90% CI (0.53-0.92); p=0.03
Anti-CTLA-4 + Anti-PD1 combination:

- 20% of patients had High TMB significantly higher than what reported in other series.

Eric X. Chen ASCO 2019
Open questions after Durva-treme combination:

- 6.6 months OS seems quite modest in light of the toxicity profile of the combination
 - Perhaps the effect can be fostered using radiotherapy...

- Can TMB increase during the course of the disease evolution?

Aparna Parikh WGI 2019
Monalizumab + durvalumab in mCRC:

- Monalizumab is an anti-NKG2A MoAb
- CRC overexpress HLA-E, the ligand of NKG2A
- NKG2A Blocks the action of NK and CD8 lymphocytes

Phase 2: Monalizumab-Durvalumab

Phase 2 expansion in mCRC in combination with Durvalumab

Seagal N ASCO 2018
Monalizumab + durvalumab in mCRC:

Table 2. Safety Summary (MSS-CRC Expansion Cohort)

<table>
<thead>
<tr>
<th>Patients With AEs, Preferred Term</th>
<th>MSS-CRC Expansion (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 AE</td>
<td>37 (92.5%)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>10 (25.0%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>7 (17.5%)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>7 (17.5%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7 (17.5%)</td>
</tr>
<tr>
<td>≥ 1 treatment-related AE</td>
<td>22 (55.0%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>AST increased</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>Rash</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>≥ 1 grade 3/4 or SAE</td>
<td>13 (32.5%)</td>
</tr>
<tr>
<td>≥ 1 treatment-related SAE</td>
<td>1 (2.5%)</td>
</tr>
<tr>
<td>≥ 1 treatment-related grade 3/4 AE</td>
<td>3 (7.5%)</td>
</tr>
<tr>
<td>Fatal AE</td>
<td>0</td>
</tr>
<tr>
<td>≥ 1 AE leading to discontinuation of monalizumab and/or durvalumab</td>
<td>0</td>
</tr>
</tbody>
</table>

AE, adverse event; SAE, serious adverse event.

Seagal N ASCO 2018
Bi-Specific T-Cell engaging antibodies

CEA-TCB structure

- Binds simultaneously with 1 arm to CD3 on T cells and with 2 arms to CEA on tumor cells
- Flexible 2-to-1 format enables high-avidity binding and selective killing of high CEA-expressing tumor cells
- Longer half-life compared with other TCB formats
- Silent Fc results in reduced risk of FcγR-related cytokine release/IRRs

Direct T-cell activation skipping antigen recognition upon binding to CEA protein.

- Simultaneous binding of TCB to tumor (CEA) and T cells (CD3)
- Killing of tumor cells independent of pre-existing immunity
- T-cell proliferation at site of activation

Personalized immune therapies are a good option in expert hands.

Personalized peptide vaccines

- DNA/RNA analysis and massively parallel sequencing
- Neoantigen discovery and NetMHC/RNA-seq inference

Adoptive T-Cell Therapy

- Therapeutic decisions
 - Choice of immune checkpoint blockade therapies
 - Use of neoantigen vaccines?

Conclusion:

• Immunotherapy is not for all-comers in MSS mCRC

• Deep understanding of tumor biology will be crucial to ensure their success and further implementation in clinical practice.

• A new generation of promising compounds and combinations specifically designed for this disease are currently initiating clinical development.
Acknowledgements:

Mentor:
Josep Tabernero

GI Malignancies division:
Teresa Macarulla
Jaume Capdevila
Elena Elez
Maria Alsina
Nuria Mulet
Helena Verdaguer
Giulia Martini
Jose Luis Cuadra
Javier Ros
Iosune Barraivar