Understanding Relevant Immune Pathways by the Oncologist

Pr. Pierre Coulie MD, PhD
de Duve Institute
University of Louvain
Brussels, Belgium
Disclosures

iTeos Therapeutics Scientific Advisory Board
eTheRNA Scientific Advisory Board
PDC*line Pharma Scientific Advisory Board
BMS Educational tasks
Merck Educational tasks
Sopartec-UCL Revenues from licensing
Looking for Killers

- The classical view:
Principal immune effectors in cancer immunotherapy: cytolytic T lymphocytes

Exquisite specificity
Memory
Cytolytic T lymphocytes (CTL) recognize on the surface of target cells **peptides** presented by **HLA class I** molecules (HLA-A, B, C).
Looking for Killers

- The classical view: CD8$^+$ CTL > tumor antigen on HLA class I

- Expected results:
Metastatic melanoma, resistance to checkpoint blockade through inactivation of antigen presentation

anti-CTLA-4
anti-CTLA-4

![Survival analysis graph showing the effect of B2M LOH on patient survival. The graph compares survival rates between patients with and without B2M LOH, with a Log-rank P value of 0.01.]
Looking for Killers

- The classical view: CD8+ CTL > tumor antigen on HLA class I

- Expected results: loss of surface HLA class I expression > resistance
Looking for Killers

- The classical view: CD8+ CTL > tumor antigen on HLA class I

- Expected results: loss of surface HLA class I expression > resistance

- Unexpected results:
<table>
<thead>
<tr>
<th>% of tumors (n = 72)</th>
<th>β2 microglobulin</th>
<th>HLA class I</th>
<th>HLA class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Co-staining for PAX5 to identify the PAX5dim+ malignant Hodgkin Reed-Sternberg cells
HLA expression (protein) in classic Hodgkin lymphoma

<table>
<thead>
<tr>
<th>% of tumors (n = 72)</th>
<th>β2 microglobulin</th>
<th>HLA class I</th>
<th>HLA class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>7</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td>Decreased</td>
<td>22</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>Negative</td>
<td>71</td>
<td>64</td>
<td>69</td>
</tr>
</tbody>
</table>

Roemer et al. - 2018 – JCO
HLA expression and outcome after PD-1 blockade in Hodgkin

β2 microglobulin

Numbers of patients (Best Overall Survival)

HLA class I

Roemer et al. - 2018 – JCO
HLA expression and outcome after PD-1 blockade in Hodgkin

HLA class II

<table>
<thead>
<tr>
<th></th>
<th>Negative (n = 20)</th>
<th>Decreased (n = 22)</th>
<th>Positive (n = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>1 (2)</td>
<td>3 (4)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>SD</td>
<td>4 (6)</td>
<td>16 (23)</td>
<td>4 (6)</td>
</tr>
<tr>
<td>PR</td>
<td>14 (20)</td>
<td>3 (4)</td>
<td>13 (19)</td>
</tr>
<tr>
<td>CR</td>
<td>1 (2)</td>
<td>8 (12)</td>
<td></td>
</tr>
</tbody>
</table>

Roemer et al. - 2018 – JCO
Looking for Killers

- The classical view: CD8+ CTL > tumor antigen on HLA class I
- Expected results: loss of surface HLA class I expression > resistance
- Unexpected results:
 - Hodgkin: clinical responses despite absence of surface HLA class I
Surface HLA class I staining patterns on CRC

Loss Regular Weak

confirms previous observations:

1998 Cabrera et al. (F. Garrido) Tissue Antigens 52:114
2005 Kloor et al. (S. Ferrone) Cancer Res 65:6418
2007 Dierssen et al. BMC Cancer 7:33
Surface HLA class I staining patterns on CRC according to MMR-d/p
Surface HLA class I staining patterns on CRC according to MMR-d/p CMS subtypes
Surface HLA class I staining patterns on CRC according to MMR-d/p CMS subtypes metastatic sites

Ijsselsteijn et al. - 2019 – Br J Cancer
Genetic alterations in genes involved in HLA class I pathway

Ijsselsteijn et al. - 2019 – Br J Cancer
Genetic alterations in genes involved in HLA class I pathway

<table>
<thead>
<tr>
<th>HLA class I loss</th>
<th>HLA-A</th>
<th>HLA-B</th>
<th>HLA-C</th>
<th>B2M</th>
<th>TAP1</th>
<th>TAP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **STOPgain**: Red
- **Frameshift InDel**: Orange
- **Non-frameshift InDel**: Purple
- **Splice-site**: Blue
- **Missense**: Green
Cytolytic T lymphocytes (CTL) recognize on the surface of target cells peptides presented by HLA class I molecules (HLA-A, B, C).

Antigens recognized by CD8 T cells on the surface of tumor cells
Genetic alterations in genes involved in HLA class I pathway
Genetic alterations in genes involved in HLA class I pathway
HLA class I antigen presentation pathway

Golgi

Endoplasmic reticulum

TAP

ERAP1

ERAP2

Tapasin

Calreticulin

ERp57

MHC class I

26S proteasome

Cytosolic proteases

Ubiquitinated Intracellular protein

adapted from Vigneron et al. - 2018 – Mol Immunol
Genetic alterations in genes involved in HLA class I pathway

Ijsselsteijn et al. - 2019 – Br J Cancer
Clinical response to PD-1 blockade in CRC patients with MSI tumors and loss of β2m

Middha et al. - 2019 – JCO Precis Oncol
Looking for Killers

- The classical view: CD8\(^+\) CTL > tumor antigen on HLA class I
- Expected results: loss of surface HLA class I expression > resistance
- Unexpected results:
 - Hodgkin: clinical responses despite absence of surface HLA class I
 - MMR-d CRC: clinical responses despite absence of surface HLA class I
Looking for Killers

- The classical view: CD8⁺ CTL > tumor antigen on HLA class I
- Expected results: loss of surface HLA class I expression > resistance
- Unexpected results:
 - Hodgkin: clinical responses despite absence of surface HLA class I
 - MMR-d CRC: clinical responses despite absence of surface HLA class I
- Other lytic cells than CD8⁺ CTL have to be involved in these clinical responses
 - should be tumor-specific, or at least tumor-selective
 - should be able to express PD-1
Lytic effector cells

- CTL CD8⁺
- CTL CD4⁺ (antigen presented on HLA class II molecules)
- Natural Killer cells

Mechanisms of lysis:
- Lytic granules (Perforin, Granzymes)
- Tumor Necrosis Factor
- FasL
- Tumor necrosis factor Related Apoptosis Ligand (TRAIL)
NK cell effector functions

NK 'tolerance'

NK cell activation

Vivier et al. - 2011 – Science
NK cell receptors

Activating receptors

<table>
<thead>
<tr>
<th>Receptors</th>
<th>Adaptors</th>
<th>Inhibitory receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>NKp46</td>
<td>CD3ζ, FcRγ</td>
<td>h KIR-L</td>
</tr>
<tr>
<td>CD16</td>
<td>CD3ζ, FcRγ</td>
<td>h LILRB1</td>
</tr>
<tr>
<td>h NKp30</td>
<td>CD3ζ, FcRγ</td>
<td>CD94/NKG2A</td>
</tr>
<tr>
<td>h NKp44</td>
<td>DAP12</td>
<td></td>
</tr>
<tr>
<td>h NKp80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKG2D</td>
<td>FcRγ</td>
<td></td>
</tr>
<tr>
<td>h KIR-S</td>
<td>DAP10, DAP12, DAP12, DAP10</td>
<td></td>
</tr>
<tr>
<td>CD94/NKG2C</td>
<td>DAP12</td>
<td></td>
</tr>
<tr>
<td>CRACC</td>
<td>SAP, EAT2</td>
<td></td>
</tr>
<tr>
<td>Ly9</td>
<td>SAP</td>
<td></td>
</tr>
<tr>
<td>CD84</td>
<td>SAP, EAT2</td>
<td></td>
</tr>
<tr>
<td>NTBA</td>
<td>SAP</td>
<td></td>
</tr>
<tr>
<td>2B4</td>
<td>SAP, EAT2, ERT</td>
<td></td>
</tr>
</tbody>
</table>

Chemotactic receptors

- KLRG-1
- TIGIT
- CEACAM-1
- LAIR-1

Cytokine receptors

Adhesion receptors

Vivier et al. - 2011 – Science
Lytic effector cells

- CTL CD8+
- CTL CD4 +
- Natural Killer cells
- NKT cells
- \(\gamma \delta \) T cells
- Innate Lymphoid Cells

Mechanisms of lysis:
- Lytic granules (Perforin, Granzymes)
- Tumor Necrosis Factor
- FasL
- Tumor necrosis factor Related Apoptosis Ligand (TRAIL)
Looking for Killers

- The classical view: CD8\(^+\) CTL > tumor antigen on HLA class I

- Expected results: loss of surface HLA class I expression > resistance

- Unexpected results:
 - Hodgkin: clinical responses despite absence of surface HLA class I
 - MMR-d CRC: clinical responses despite absence of surface HLA class I

- Other lytic cells than CD8\(^+\) CTL have to be involved in these clinical responses
 - should be tumor-specific, or at least tumor-selective
 - should be able to express PD-1

- Different mechanisms might lead to tumor regression and tumor stabilization

- Different killers, with different specificities, probably act on different tumors

- 'Finding the killers' might open new possibilities for currently resisting tumors