Optimal approach in locally advanced disease: ESO-ESMO ABC Guidelines

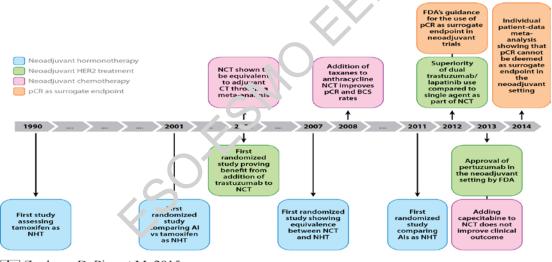
Damir Vrbanec Jurai Dobrila University of Pula

Croatia

SPECIAL ARTICLE

Annals of Oncology 29: 1634–1657, 2018 doi:10/1037/annonc/mdy192 Published online 19 July 2018

4th ESO–ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)[†]

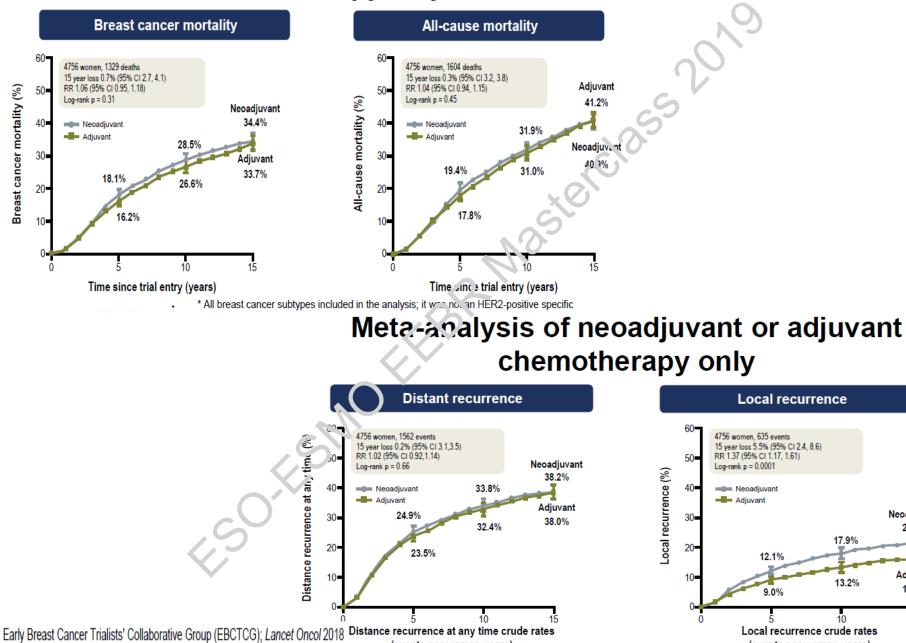

F. Cardoso^{1*}, E. Senkus², A. Costa³, E. Papadopoulos⁴, M. Aapro⁵, F. André⁶, N. Harbeck⁷, B. Aguilar Lopez⁸, C. H. Barrios⁹, J. Bergh¹⁰, L. Biganzou¹¹, C. B. Boers-Doets¹², M. J. Cardoso¹³, L. A. Carey¹⁴, J. Cortés¹⁵, G. Curigliano¹⁶, V. Diéras¹, M. S. El Saghir¹⁸, A. Eniu¹⁹, L. Fallowfield²⁰, P. A. Francis²¹, K. Gelmon²², S. R. D. Johnston²³, R. Kaufman²⁴, S. Koppikar²⁵, I. E. Krop²⁶, M. Mayer²⁷, G. Nakigudde²⁸, B. V. Offersen²⁹, S. Ohno³⁰, Q. Pagani³¹, S. Paluch-Shimon³², F. Penault-Llorca³³, A. Prat³⁴, H. S. Rugo³⁵, G. W. Sledge³⁶, D. Spence³⁷, C. Thomssen³⁸, D. A. Vorobiof³⁹, B. Xu⁴⁰, L. Norton⁴¹ & E. P. Winer⁴²

Section XI: LABC

CO		
Guizeline statement	LoE/GoR	Consensus
Systemic therapy (not surgery or RT) should be the initial treatment.	III/A	100%

Neoadjuvant treatment for breast cancer :

- The concept of neoadjuvant chemotherapy for breast cancer was first evaluated more than 30 years ago for the treatment of locally advanced and inoperable breast cancer
- Neoadjuvant chemotherapy /NACT/, also called primary sistemic therapy, is a treatment option given after diagnosis, but before surgery for non-metastatic cancer



Annu. Rev. Med. 66:31–48

Advantages of NAT :

- increase opportunity for BCS and less radical axillary dissection
- avoiding the risk associated with surgery, improved cosmetic outcomes and reduced postoperative complications such as lymph edema
- permits an early evaluation of clinical efficacy of systemic therapy
- the surrogate endpoint, the presence or absence of residual invasive cancer after neoadjuvant therapy is a strong prognostic factor for risk of recurrence/especially in triple-negative and HER-2 positive breast cancer
- allows more time for genetic and other testing(surgical options)
- enables a second opportunity in patients with no pCR
- trials evaluating neoadjuvant therapies require smaller numbers of patients with inhecent lower coast compared with larger adjuvant studies – supports faster regulatory approval of new drugs

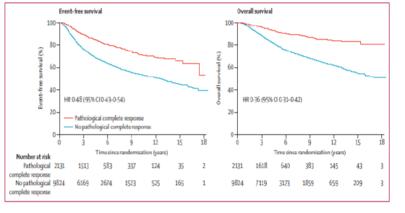
Meta-analysis of neoadjuvant or adjuvant chemotherapy only

(events per woman-years)

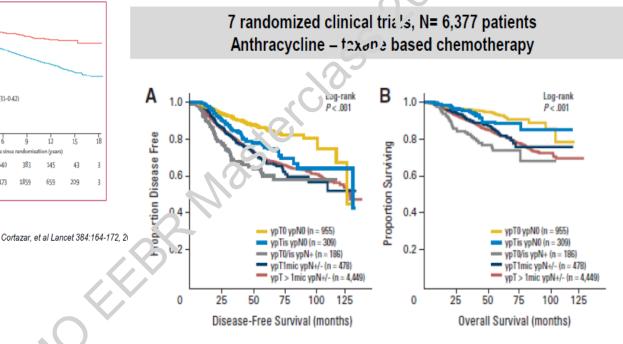
Neoadjuvant

21.4%

Adjuvant

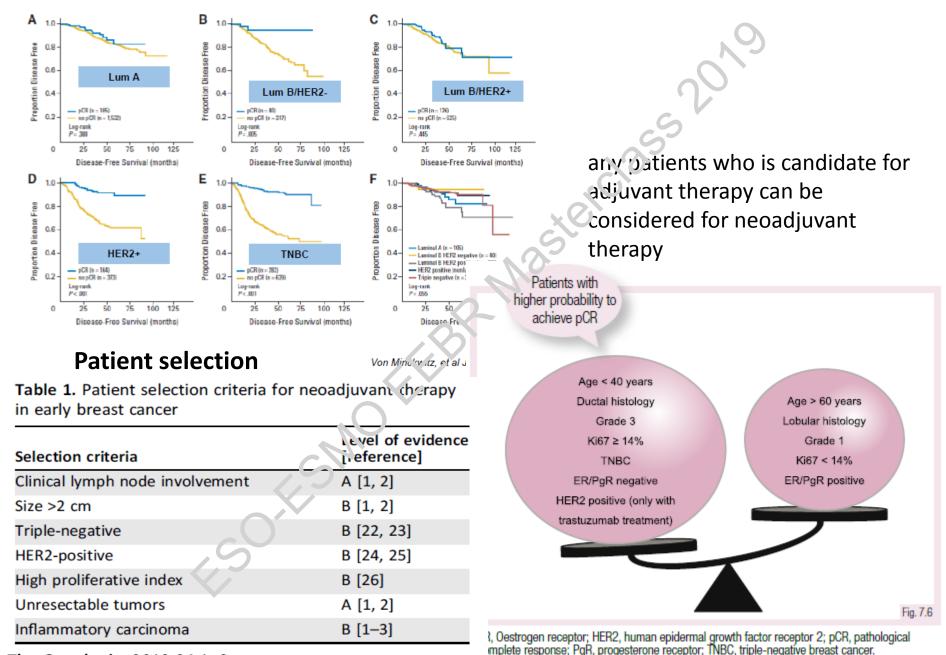

15.9%

15


(events per woman-years)

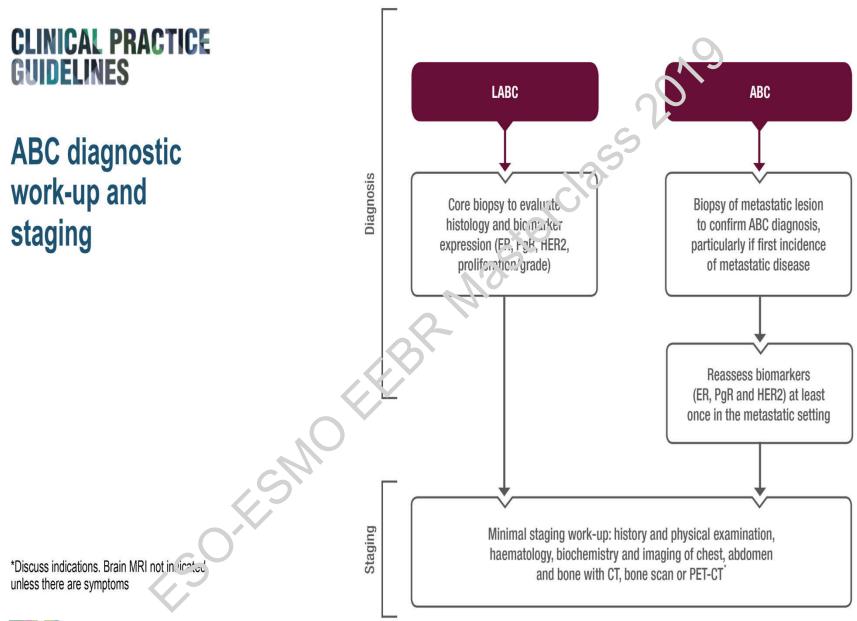
pCR and long term clinical benefit : the CTNeoBC pooled analysis

12 international clinical trials, N= 11,955 patients Anthracycline – taxane based chemotherapy


Pathologic complete response (pCR) : Definition and prognostic implication

Von Minckwitz, et al JCO 30:1796-1804, 2012

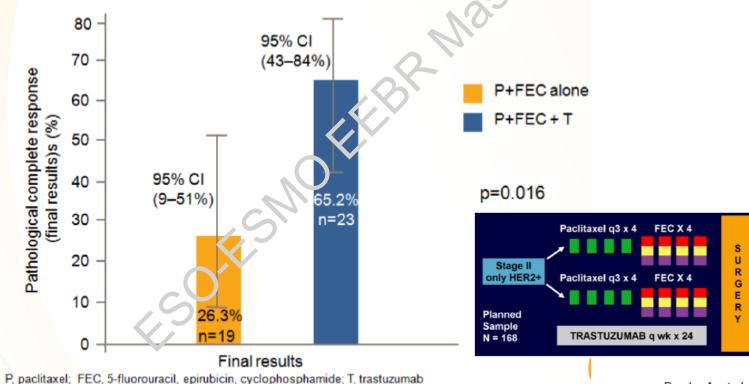
The absence of any residual cancer cells in the breast and lymph nodes following preoperative therapy is called a pathological complete response (pCR). In many neoadjuvant trial, patients with pCR showed a better long-term outcome. Patients with residual invasive tumor in lymph nodes have the worst prognosis in terms of disease-free survival/DSF/ and overall survival/OS/


Clinical impact of pCR according to subtypes

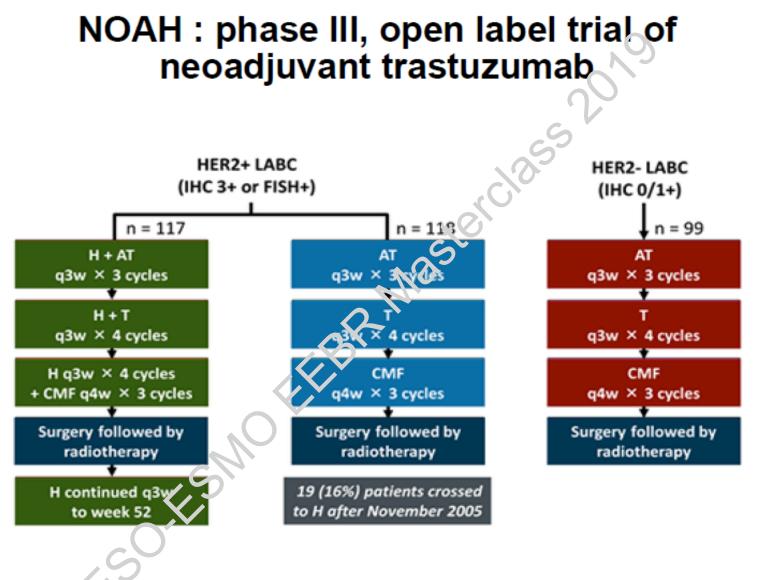
The Oncologist 2019;24:1-9

Section XI: LABC

		00
Guideline statement	LoE/GoR	Consensus
Before starting any therapy, a core biopsy providing histology and biomarker (ER, PgR, HER2, proliferation/grade) expres- sion is indispensable to guide treatment decisions.	VA	97%
Since LABC patients have a significant risk of metastatic disease, a full staging work-up, including a complete history, physical examination, laboratory tests and imaging of chest and abruomen (preferably with CT scan) and bone, be- fore initiation of systemic therapy is highly recommended.	νA	100%
PET-CT, if available, may be used (instead of and not in acdition to CT scans and bone scan).	II/B	100%
Systemic therapy (not surgery or RT) should be the initial treatment.	III/A	100%

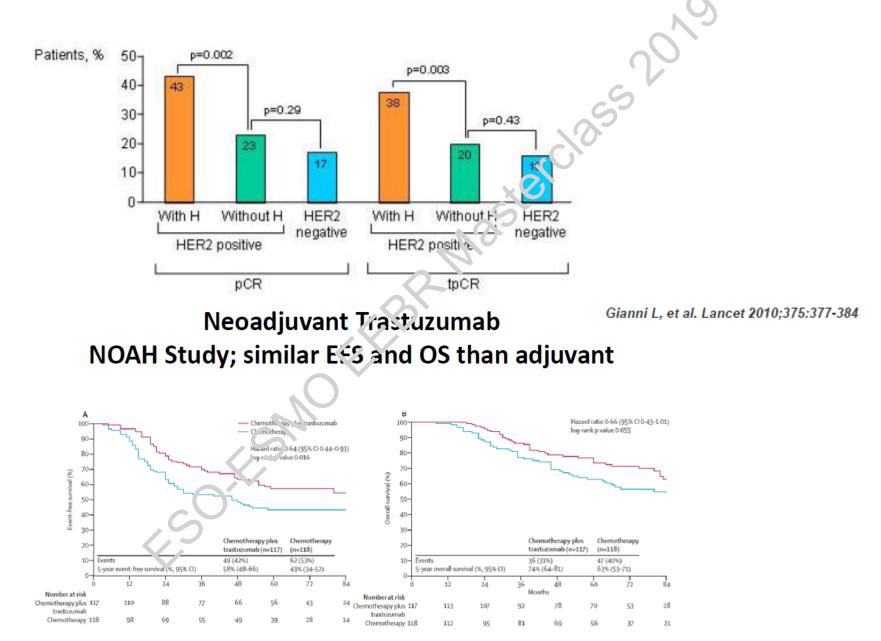


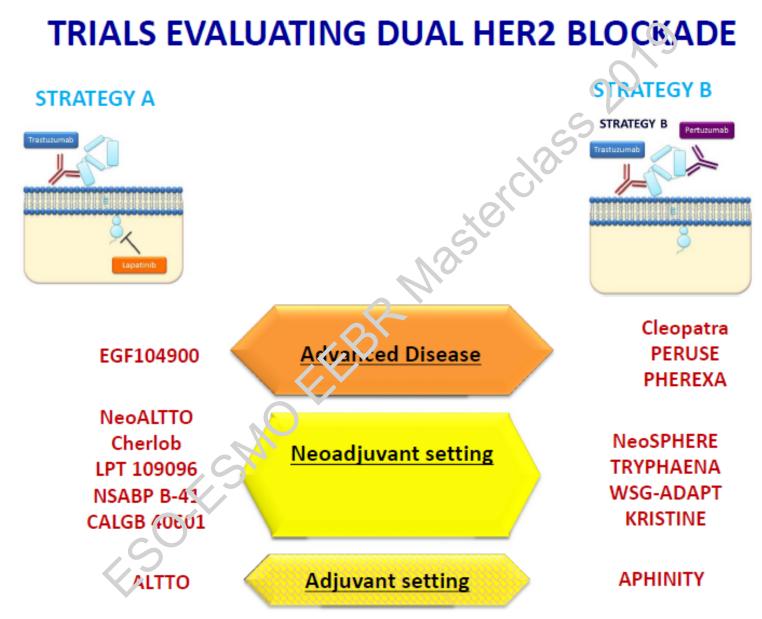
	2	519
Guideline statement	LOE/GOR	Consensus
A combined treatment modality based on a multidisciplinary approach (systemic therapy, surgery and RT) is strongly indi- cated in the majority of cases		100%
LSO LSO		


HER2-positive LABC

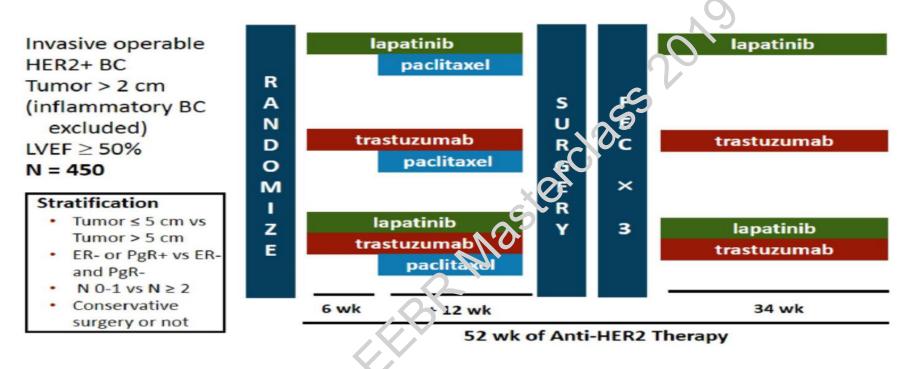
Double vs single anti-HER2 therapies

Neoadjuvant Trastuzumab significantly increases pCR rates



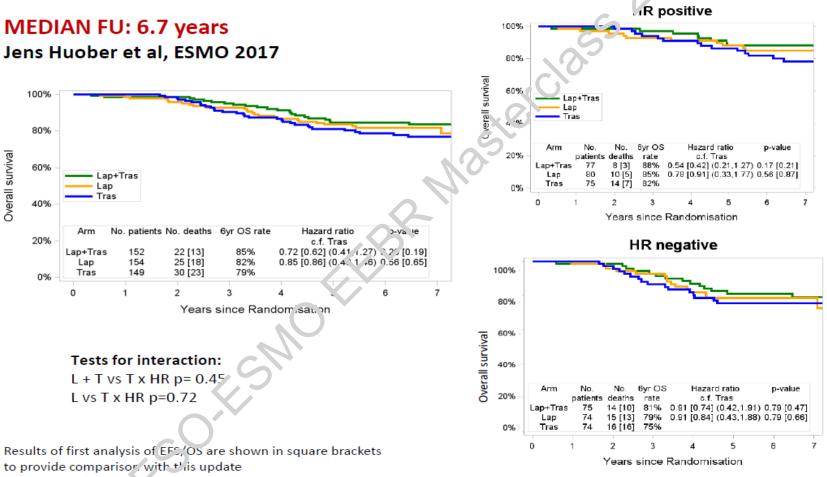

Meta-analysis: Neoadjuvant anthracyclines/taxanes with or without trastuzumab All cooperative neoadjuvant trials in Germany between 1998 and 2006 using anthra/taxanes (N=4913) plus GeparQuattro and TECHNO trials (N=1721) using trastuzumab for HER2+ tumors Von Minckwitz et al, SABCS 2008, Abstract 79 Goals: 634 pts In patients with HER2+ tumors: P-value Trastuzumab No Trastuzumab (N=671) (N=736) 41% 23% <.001 pCR rate Other characteristics associated with high rate of pCR (multivariate analysis): Younger age (P<.001) Ductal (PX/001) Histological grade 3 (p<.001) Poste HER2 (P<.001) Negative HR (P<.001) Tumor size (P<.001) Conventional dosage (vs. dd) (P<.001)

Gianni L, et al. Lancet 2010;375:377-384


Cooperation of trastuzumab increased pCR & EFS : NOAH trial

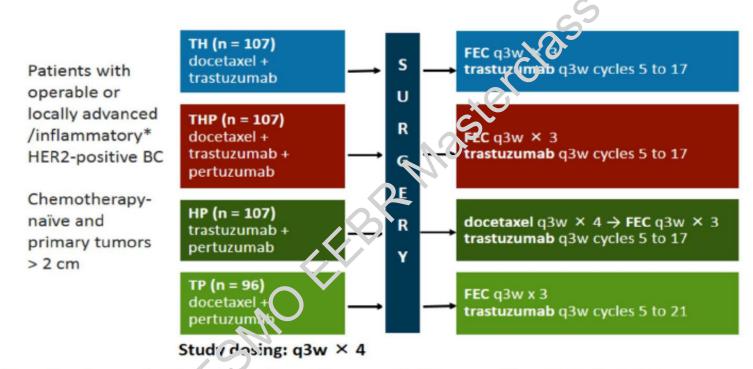
Alvaro Moreno-Aspitia et al, ASCO 2017

NeoALTTO : dual HER2 blockade with lapatinib/trastuzumab

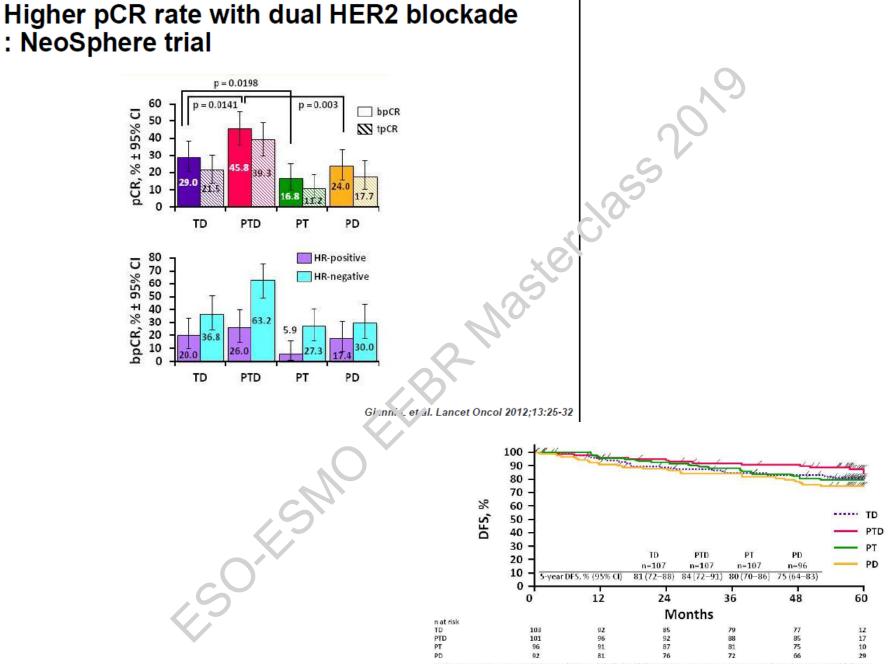


Baselga J, et al. Lancet 2012;379:633-640

Study and regimen, %	Tetal pCR: T	Total pCR: L	Total pCR: T + L
NeoALTTO ¹ (N = 455) L and/or T; paclitaxel added after first 6 weeks	27.6	20.0	46.8 *p=0.0007 c/w T
NSABP B-41 ² (N = 519) AC → paclitaxel + T and/or L	49.4	47.4	60.2 p=0.056 c/w T
CALGB 40601 ³ (N = 299) Paclitaxel + H and/or L (*pCR in br at only)	46	32	56 p=NS c/w T or L
CHER-LOB ⁴ (N = 121) Paclitaxel \rightarrow FEC with T and/or L	25.0	26.3	46.7 *p=0.019 c/w T and L arms
TRIO B07 ⁵ (N = 128) H and/or L \rightarrow docetaxel/ carboplatin + T and/or L	47	26	52 p=NS c/w T

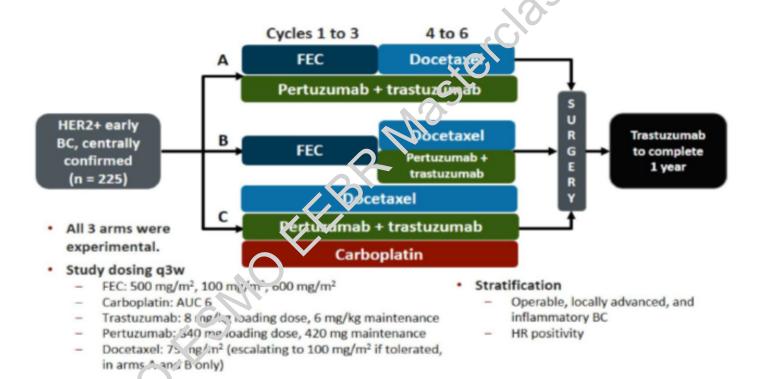

L, lapatinib; T, trastuzumab

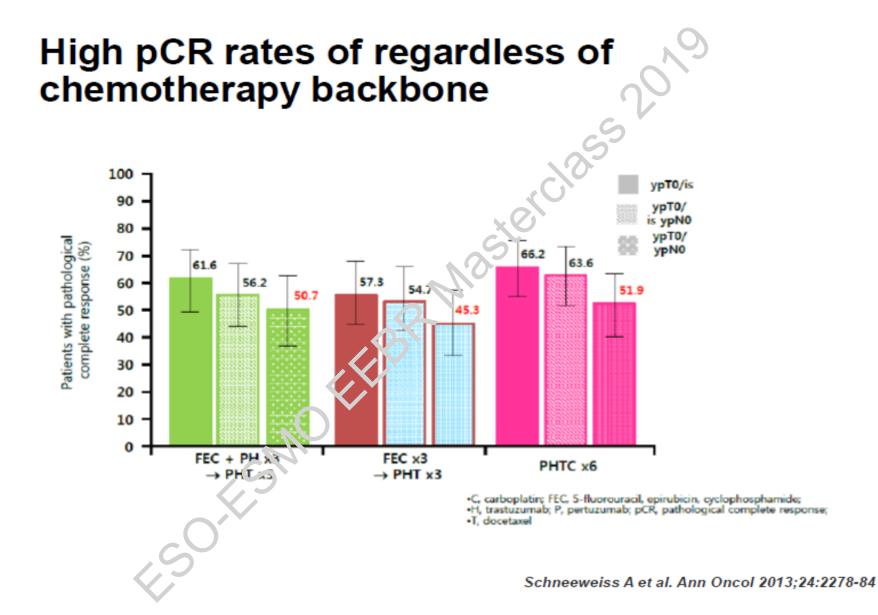
NeoALTTO trial Overall Survival Analysis by treatment arm

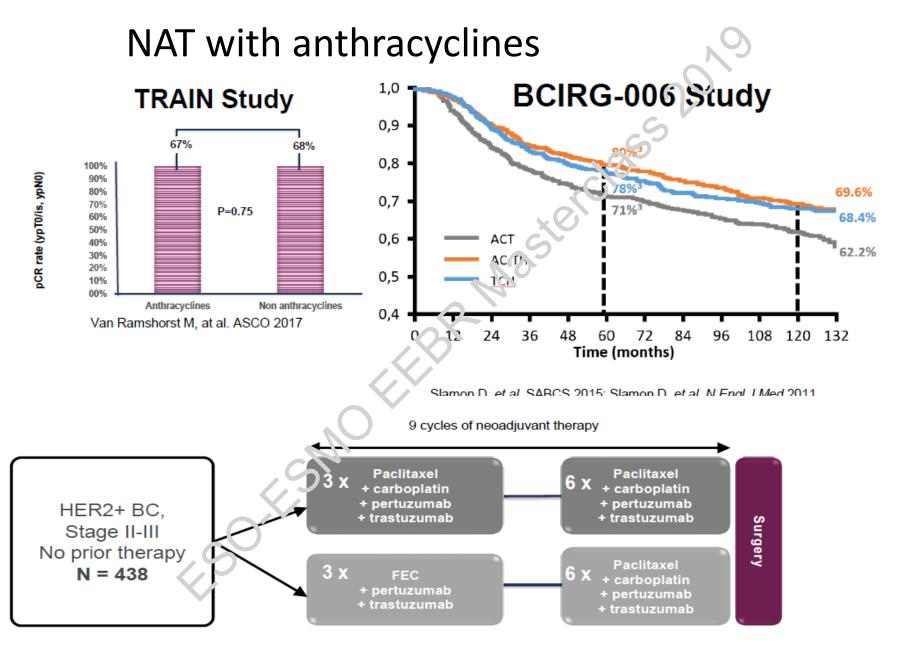

De Azambuja et al. Lai set Oncol 2014

NeoSphere : dual HER2 blockade with pertuzumab and trastuzumab

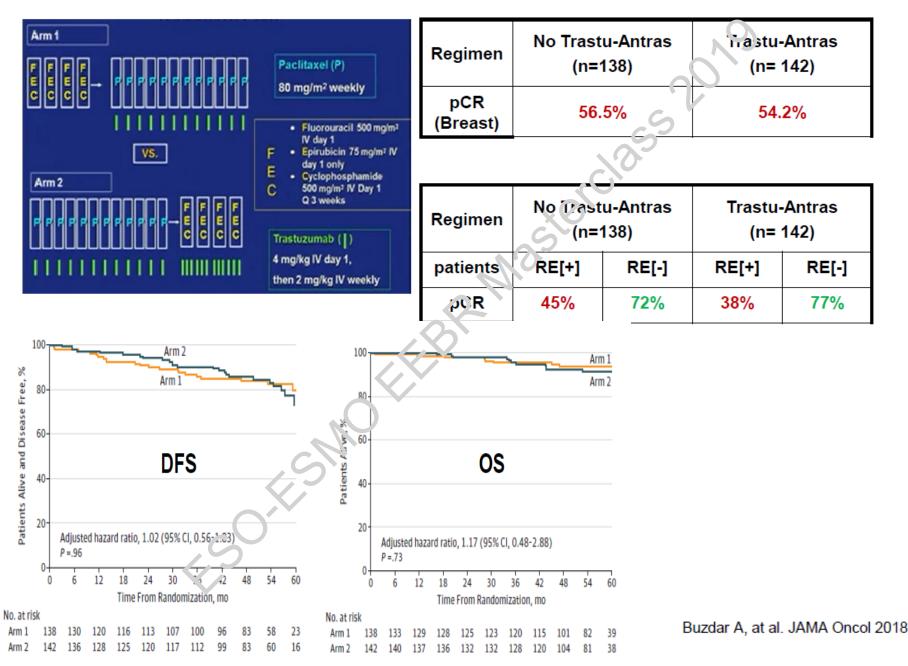
*Locally advanced = T2-3, N2-3, M0 or T4a-c, any N, M0; operable = T2-3, N0-1, M0; inflammatory = T4d any N, M0

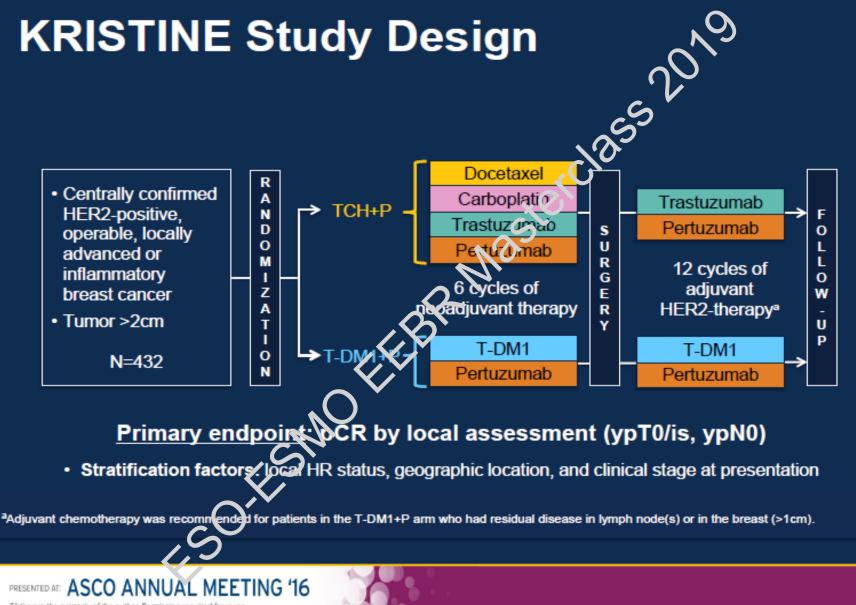

Gianni L et al. Lancet Oncol 2012;13:25-32


Presented By Luca Gianni at 2015 ASCO Annual Meeting

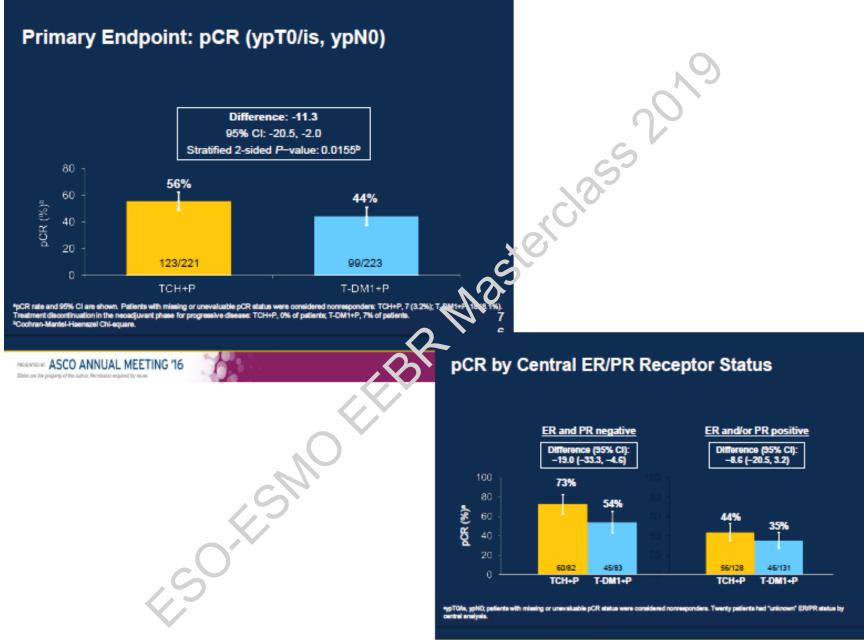

Kaplan–Meier curves are truncate dat 60 months (the end of scheduled follow-up). However, summary statistics shown here take into account all follow-up Two late events occurre dwith PTD: one case of PD at 67 months, and one death due to an unrelated cere brovascular accident without PD at 72 months

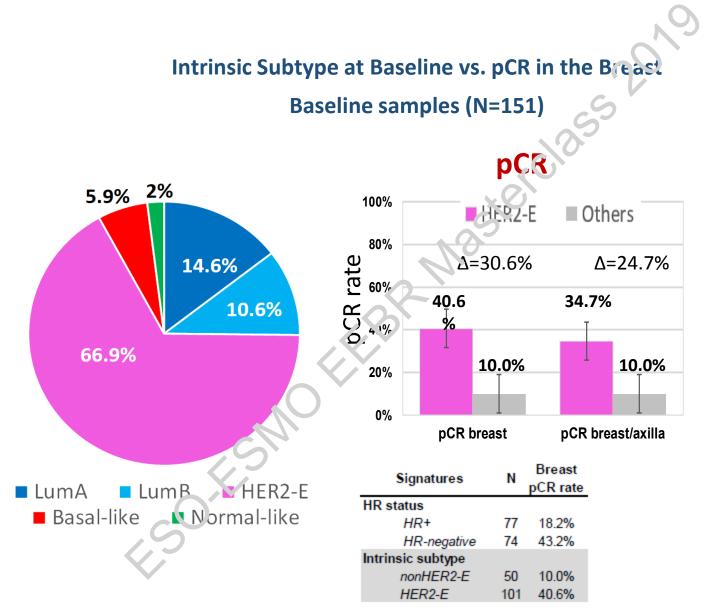
TRYPHAENA : phase II neoadjuvant trastuzumab and pertuzumab in HER2+ EBC


Schneeweiss A et al. Ann Oncol 2013;24:2278-84



Van Ramshorst M, at al. ASCO 2017


ACOSOG Z1041 (Alliance)



8

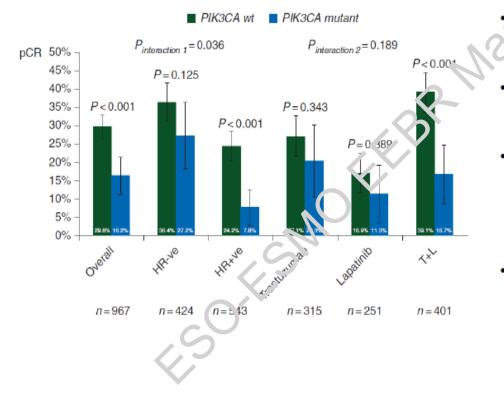
Slides are the property of the outhor. Permission required for reuse

ASCO ANNUAL MEETING 16

No other clinical-pathological variable was found associated with pCR.

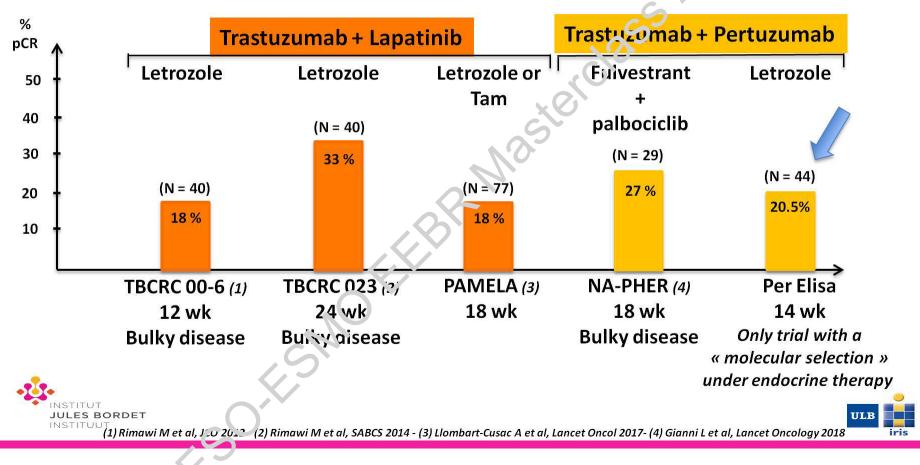
Table 1. Pathological complete remissi	on rates in neoadjuvant trials with anti-HER2 bloc	kade on HR-positivo 'o eas	t cancers	
Type of neoadjuvant therapy	Therapy	انتا	pCR (%)*	pCR rates in pre-/ post-menopausal patients (%)
Chemotherapy+trastuzumab	T-DM1	A.D.A.27 (n=119) [53]	41	37.9/44.1
	Trastuzumab+docetaxel	GrLGB40601 (n=70) [45]	41	
	N°C	NeoSphere (n=50) [43]	20	
Chemotherapy+dual HER2 blockade	T-DM1+pertuzumab	KRISTINE (n = 138) [54]	35	
	Trastuzumab+docetaxel+carboplatin+p >rtuzumab	KRISTINE (n = 128) [54]	44	
	Trastuzumab+docetaxel+lapatini	CALGB40601 (n=69) [45]	41	
	Trastuzumab+docetaxel+perในzนเทลป	NeoSphere (n=50) [43]	26	
Chemotherapy+dual HER2 blockade+endocrine therapy	Trastuzumab+docetaxel, cai oc/atin+pertuzumab+ aromatase inhibitor	NSABP B-52 (n = 157) [49]	46	
Chemotherapy+trastuzumab+endocrine therapy	T-DM1+endocring merapy	ADAPT (n=127) [53]	41.5	38.1/45
Trastuzumab+endocrine therapy	Trastuzuma : e oucrine therapy	ADAPT (n=129) [53]	15.1	13.6/16.7
Dual HER2 blockade	Trastuz imai: +pertuzumab	NeoSphere (n=51) [43]	6	

HER=human epidermal growth factor receptor CHR=hormonal receptor; pCR=pathological complete response; T-DM1=trastuzumab emtansine. *pCR rate for HER2 positive and estrogemenceptor positive tumours (pCR rate in %).


Biomarkers

Neosphere (neoadjuvant pertuzumab)

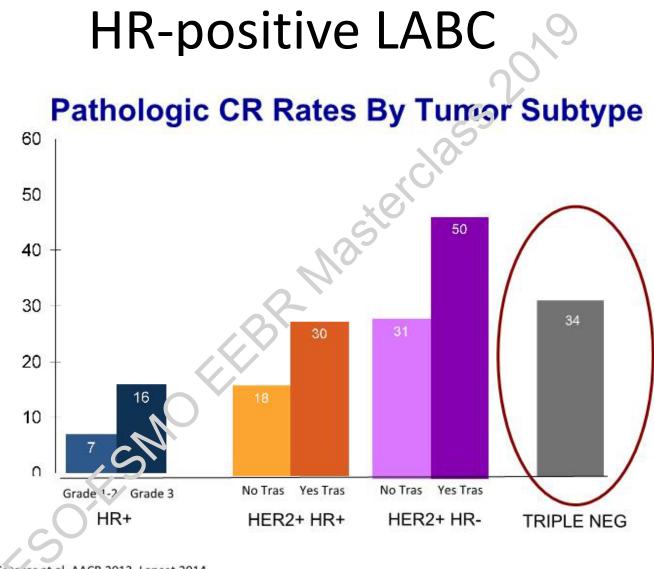
- HER2 expression (H-score) associated with sensitivity to penuzumab
- Exon 9 PI3K mutations linked to lack of sensitivity to HER2-directed Mab's (prognosis)
- <u>NeoALTO (neoadjuvant lapatinib)</u>
 - Lower rate of pCR in 23% with PIK3CA mutations
- Across neoadjuvant trials
 - Lower rate of pCR in ER+ disease
 - Higher pCR in HER2 enriched (and improved outcome in NSABP B-31)
 - 70% in HER2-E vs. 35% in luminal
- Immune markers
 - CALGB 40601 and N9831
 - Improved pCR and outcome correlates with immune signatures


PIK3CA mutations are associated with reduced pathological complete response rates in HER2+ disease

N=967 (GeparQuattro, GeparQuinto, GeparSixto, NeoALTTO, CHERLOB)

- Chemotherapy + antiHER2 (single vs. dual)
- Overall, the pCR rate was significantly lower in the PIK3CA mutant compared with the wild-type group (16.2% versus 29.6%; P<0.001).
- Within the HR+ subgroup, the PIK3CA mutant group had a pCR rate of only 7.6% compared with 24.2% in the wild-type group (P<0.001).

Single-arm Neoadjuvant trials of dual anti-HER2 blockade + endocrine therapy : pCR (YpT0/is YpN0) rates reported

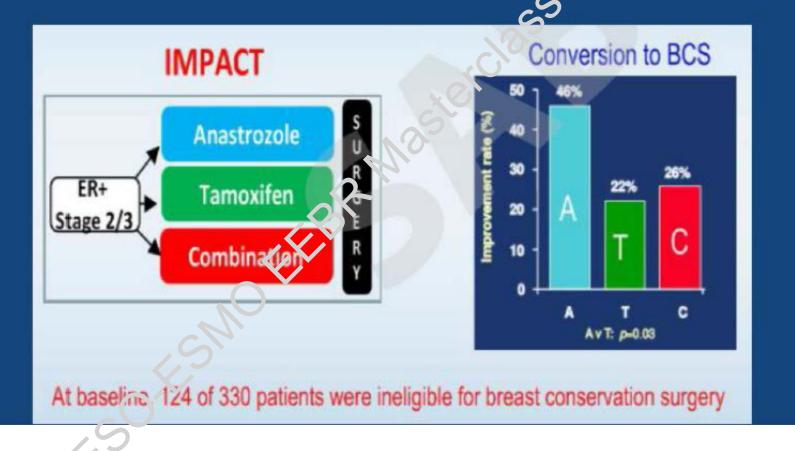

TABLE 3. Ongoing or Planned Trials Evaluating HER2-Directed Agents in the Preoperative Setting

Study Name	No. of Patients	ClinicalTrials.gov Identifier	Treatment Arms	Primary Objective
BOLD-1	1,366 (open)	NCT02625441	Taxane/trastuzumab/pertuzumab $\times 3 \rightarrow FE \times 3$ vs. taxane/trastuzumab $\times 3 \rightarrow FEC \times 3 \rightarrow Trastuzumab$ for 1 year	pCR
BRUOG308	30 (open)	NCT02789657	Paclitaxel/carboplatin/trastuzumai/r ertuzumab × 4	
			Paclitaxel/carboplatin/trastu_u \sim b/pertuzumab × 4 \rightarrow AC × 4	
			Paclitaxel/carboplatin/t as \cdots umab/pertuzumab × 6 \rightarrow AC	pCR
			Paclitaxel/carbop'ativ/trastuzumab/pertuzumab × 6	
			Paclitaxel/carb c^{1} tin/trastuzumab/pertuzumab × 4 \rightarrow AC × 4	
GeparOcto	950 <mark>(</mark> open)	NCT02125344	PMCb vs. FTC if HER2+, also pertuzumab/ trastuzumab	pCR
NEOTOP	90	NCT02339532	If TOP2 4 <>> nplified, FEC × 3 then docetaxel/trastuzumab/ ertuzumab × 3 → 3 cycles of trastuzumab/pertuzumab/ uccetaxel	pCR
			n TOP2A not amplified, docetaxel, carboplatin/trastuzumab/ pertuzumab × 6	
PALTAN	48	NCT02907918	Palbociclib + letrozole (+ goserelin if premenopausal) + trastuzumab × 16 weeks	pCR
Predix-HER2	200 (open)	NCT02568839	Docetaxel/sq trastuzumab/pertuzumab vs. T-DM1 therapy arms switched if no response after cycle 2	pCR
TEAL	30 (open)	NCT02073437	T-DM1/lapatinib → nanoparticle albumin-bound paclitaxel vs. trastuzumab/pertuzumab/paclitaxel	pCR
TP-II	259	NCT J3272477	Paclitaxel/trastuzumab/ pertuzumab × 14 weeks vs. trastuzumab/pertuzumab/endocrine therapy × 14 weeks	pCR

Abbreviations: pCR, pathologic complete response, EC -FU, epirubicin, and cyclophosphamide; AC, adriamycin-cytoxan; P, paclitaxel; M, nonpegylated liposomal doxorubicin; Cb, carboplatin; ETC, epirubicin, taxane, cytoxan.

asco.org/edbook | 2018 ASCO EDUCATIONAL BOOK

Guideline statement	LoE/GoR	Consensus
For HER2-positive LABC , concurrent tax- ane and anti-HER2 therapy is recom- mended since it increases the rate of pCR.		92% 5
For HER2-positive LABC , anthracycline- based ChT should be incorporated in the treatment regimen.	I/A C	72%
When an anthracycline is given, it should be administered sequentially with the anti-HER2 therapy.	I/A	87%
For patients with HER2-politive LABC (inflammatory or non-inflammatory), without distant metastases, who are in complete remission after appropriate neoadjuvant systemic therapy and ap- propriate locoregional therapy, and being treated with a potential curative intent, the approved adjuvant duration of I year of anti-HER2 therapy should be used.	I/A	85%



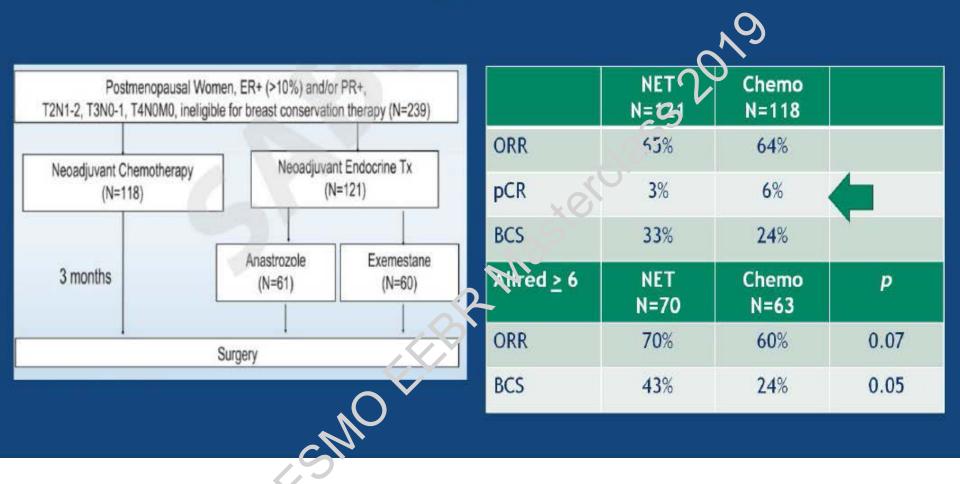
Colc.zar et al, AACR 2013, Lancet 2014

Luminal EBC: Small neoadjuvant trials (?~~800) with early response assessment predict outcome of large phase III trials (n~11,000)

Trial	IMPACT	ATAC	ACOSOG Z1031	YERCE	NEWEST	CONFIRM
Patients	158	9366	377	4136	211	736
Setting	neoadjuvant	adjuvant	necacijuvant	adjuvant	neoadjuvant	palliative
Drugs	Tamoxifen / Anastrozole / Combination	Tam / Ana / Comb.	Ana / Letrozole / Exemestane	Let / Ana	Fulvestrant ₅₀₀ / F ₂₅₀	F ₅₀₀ / F ₂₅₀
Efficacy	2-week Ki67 suppression: ANA > TAM (p=0.004); TAM=combination	ANA v. 1AM DFC 0.37; p=0.01; Combination arm discontinued	Geometr. mean % Ki67 change: surgery) A -78, L-87.1, E-81.2% (biolog. equal)	5y DFS 84.8 vs. 82.9% (HR 0.93; 0.80-1.07) p=n.s.	4-week Ki67 Ll reduction - 78.8 vs 47.4% (p<0.0001)	Median OS 26.4 vs. 22.3 months (HR 0.81; nominal p=0.02)

NET increases BCS

Smith et al, JCO 2005


NET vs. Chemotherapy

		<u> </u>			
	NET	N	Duration	Clinical Response	
Thomas (2007)	Letrozole	103	3 months	89% vs 85%	
Semiglazov (2007)	Anastrazole or Exemestane	239	3 months	65% vs 64%	
Generali (2011)	Letrozole	i14	6 months	73% vs 88%	
Alba (2011)	Exemestane +/- goserenn	95	6 months	48% vs 66%	
Palmieri (2014)	Letrozole	44	18-23 weeks	59% vs 55%	
<	S				

Charehbili, Can Treat Rev 2014

NET vs. Chemotherapy

S

Semiglazov, Cancer 2007

Putting NET into Practice

	\sim				
	Neo CT	NET			
Ideal candidate	TNBC, HER2+	Allred \geq 6, lobular			
Duration of Rx	on of Rx Defined # cycles Prolonged a				
Follow-up	Each cycle	Recommend q4-6 weeks			
pCR	30-50%, impacts DF3	Rare, no impact on PFS			
Early biomarkers	Change in FDG uptake (?)	Ki-67, PEPI			
Multiplex assays	Predictive	Predictive			
Local therapy	Adjust based on response	Adjust based on response			
LSO LSN					

AGO e. V. in der DGGG e.V. sowie in der DKG e.V.

Guidelines Breast Version 2018.1

Neoadjuvant Endocrine Therapy in Patients with Endocrine-responsive Breast Cancer

	Oxford		
	LoE	GR	AGO
 Postmenopausal patients: 			
 Who are inoperable and cannot / will not receive chemotherapy 	2a	в	+
 Optimizes the option for breast conserving therapy 	1b	Α	+
Aromatase inhibitors (for > 3 month)	1aª	В	+
 Aromatase inhibitor + lapatinib (Vic R2, BC) 	2b	В	+/-
Premenopausal patients			
 Who are inoperable and cranc+ / will not receive chemotherapy 	5	с	+
 Tamoxifen 	2b	С	+
Aromatase inhibitors + L/IRHa	1b	С	+/-
 Concurrent chemo-endocrine therapy 	1b	Α	-
Prognostic scurz.			
 PEPI: pTN-Staurum, ER expression and Ki-67 expression after neoadjuy.r.c endocrine therapy 	1b	В	+

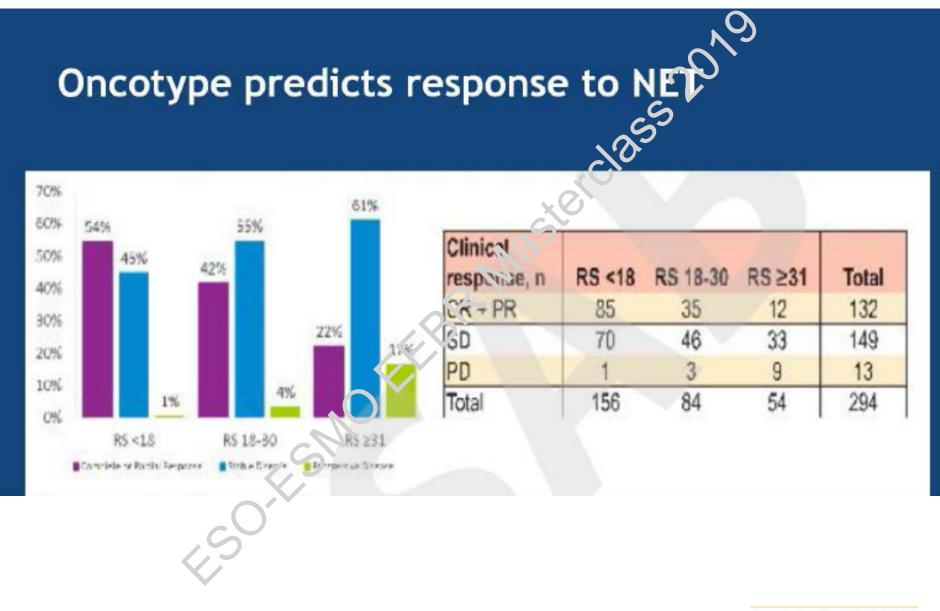
www.ago-online.de

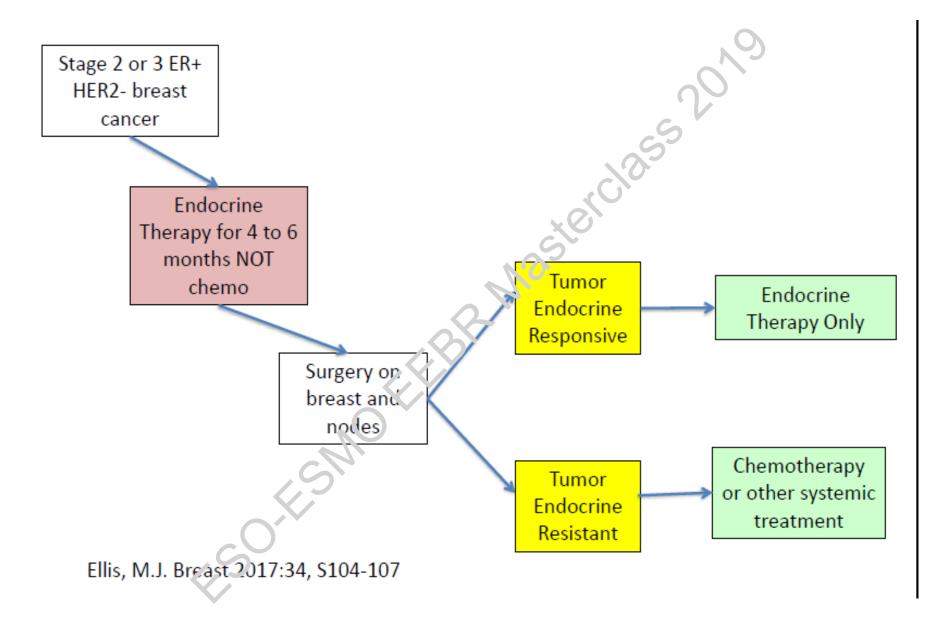
FORSCHEN LEHREN HEILEN

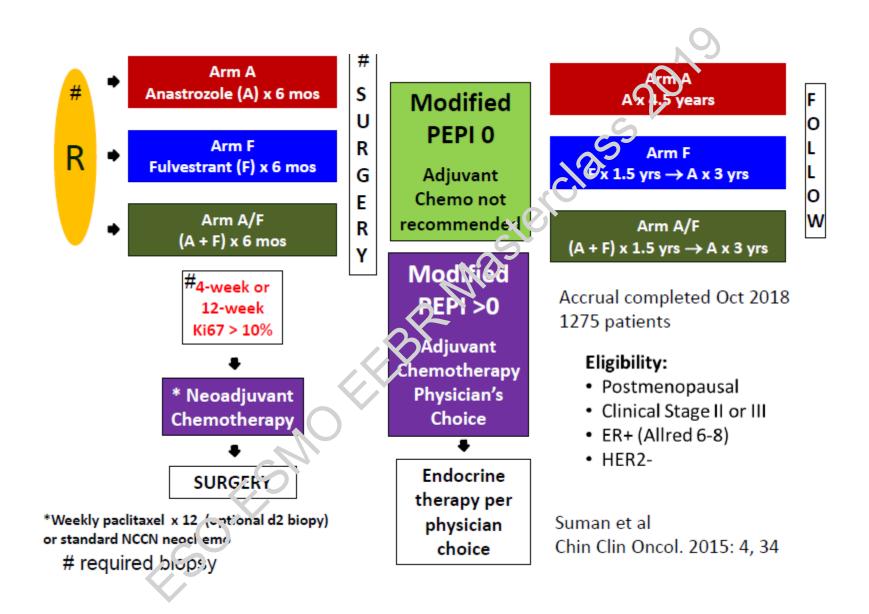
^a Opt' nai dur ition of neoadjuvant endocrine therapy is unknown.

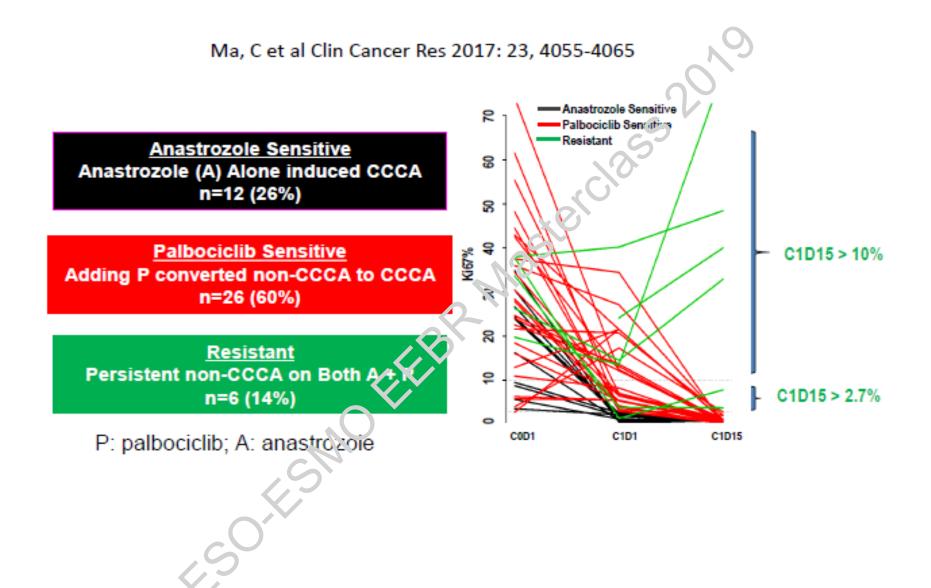
No lorg term results for neoadjuvant endocrine therapy (vs. adjuvant endocrine therapy)

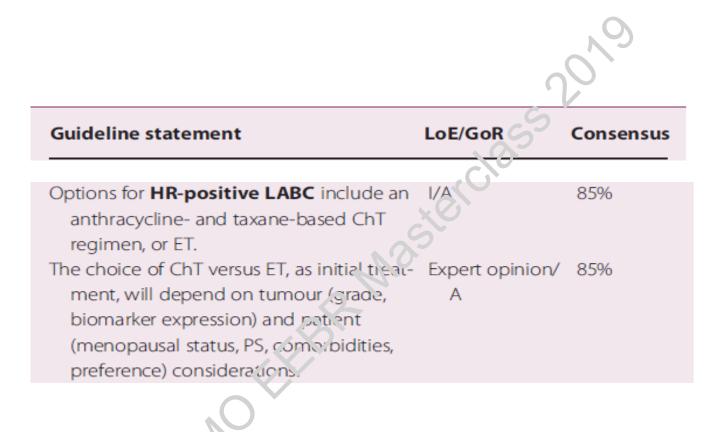
Preoperative Endocrine Predictive Index (PEPI)

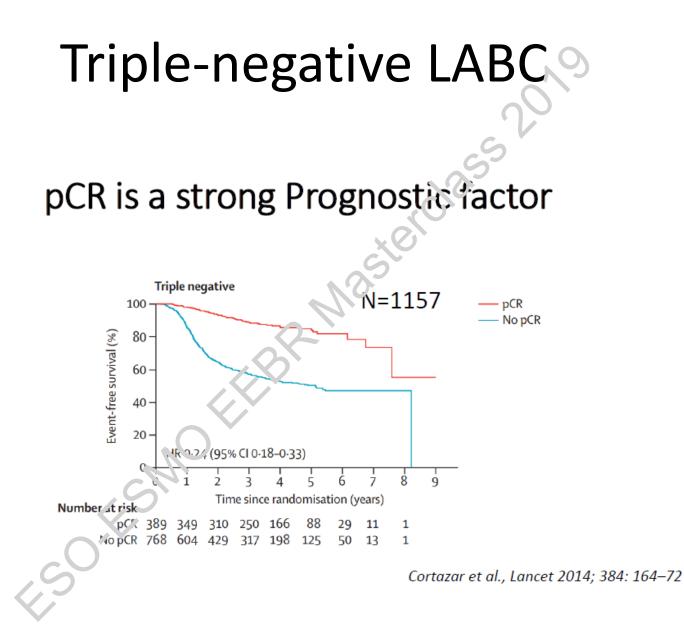

Pathology, Biomarkers Factors		RFS		BCS	
		HR	Points	HR	Points
Tumor size	T1/2	•	0	•	0
	T3/4	2.8	3	4.4	3
Node status	No		0		0
	Yes	3.2	3	3.9	3
Ln Ki67 level	0 -1		0		2.0
	1+ -2	1.3	1	1.4	1
	2+ -3	1.7	1	2.0	2
	3+ -4	2.2	2	2.7	3
	4+	2.9	3	3.b	3
ER Allred	0-2	2.8	3	7.0	3
	3-8		10		0

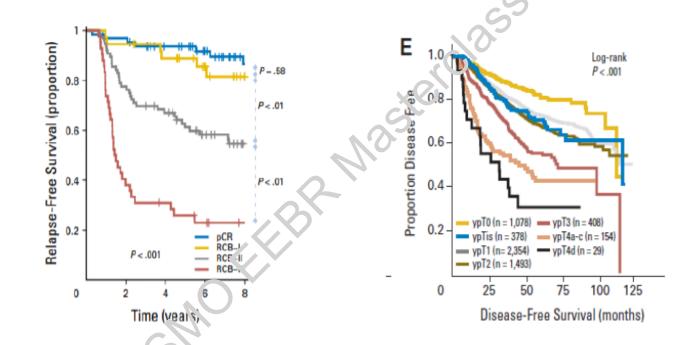

 Initial developed in P024 trial to predict recurrence
 Validated in Z1031

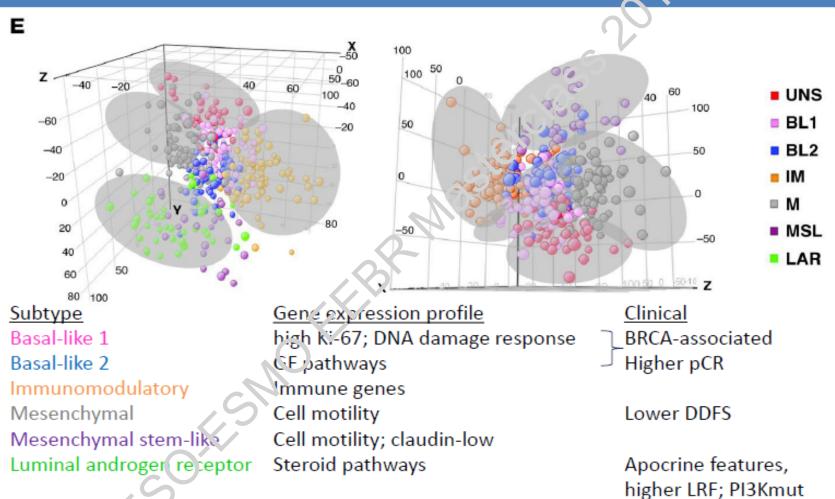

PEPI 0
pT1/2
pN0
Ki67 ≤ 2.7%
ER Allred 3-8


Modified PEPI score excludes ER


Ellis, JNCI 2008






Recurrence in TNBC correlates with volumen of residual disease

Estimates 10-year relapse-free survival rates: 86%, 81%, 55%, and 23%

W. Fraser Symmans et al., J Clin Oncol 35:1049-1060, 2017 von Minckwitz et al., J Clin Oncol 30:1796-1804.

Clinical Heterogeneity of TNBC

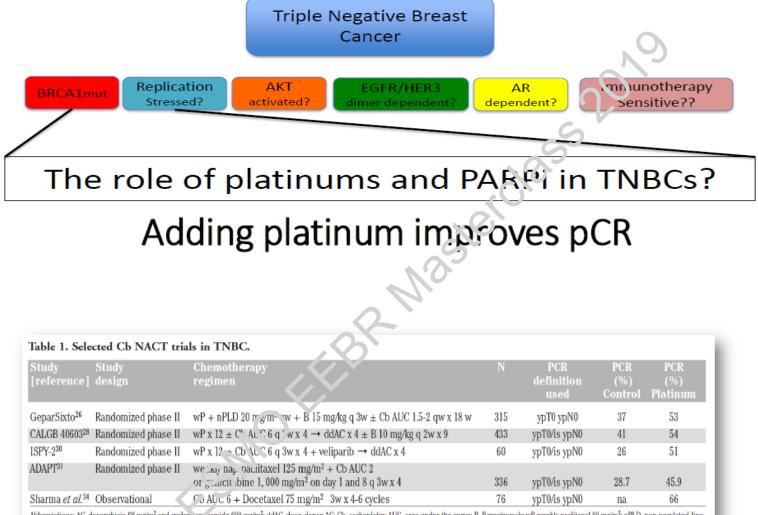
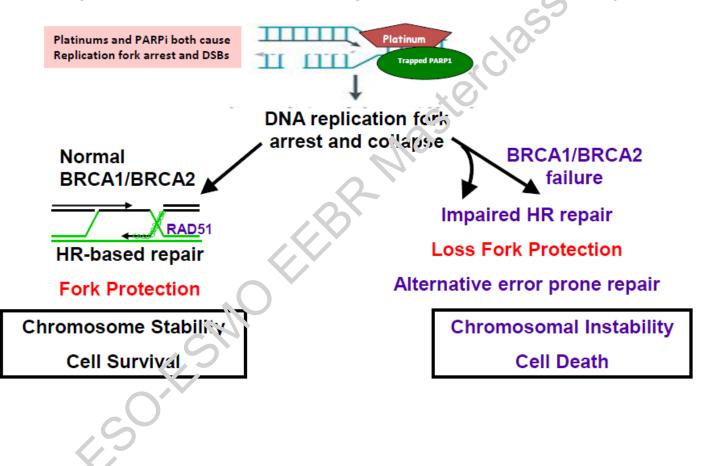
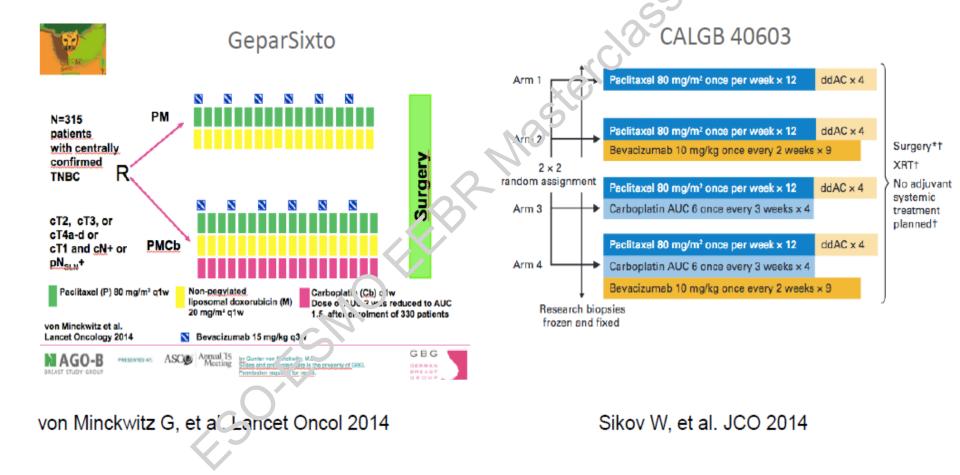
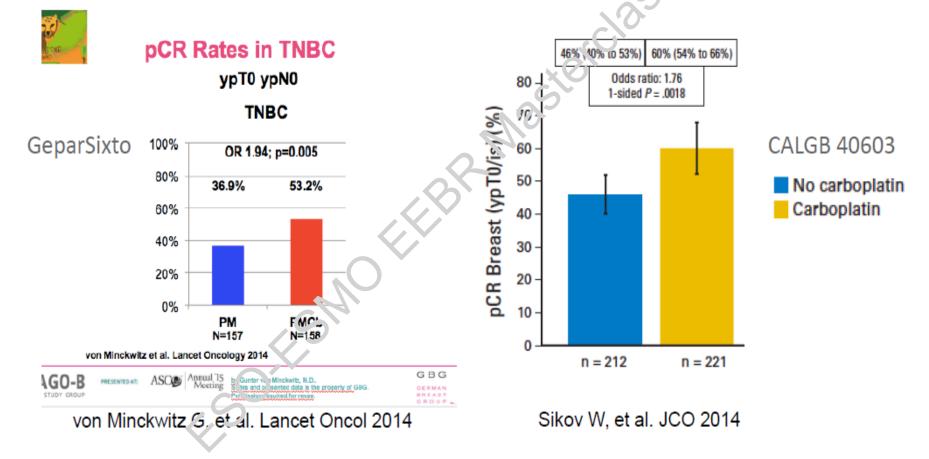

Lehman BD, et al. 5 clin Invest 2011;121:2750-67.

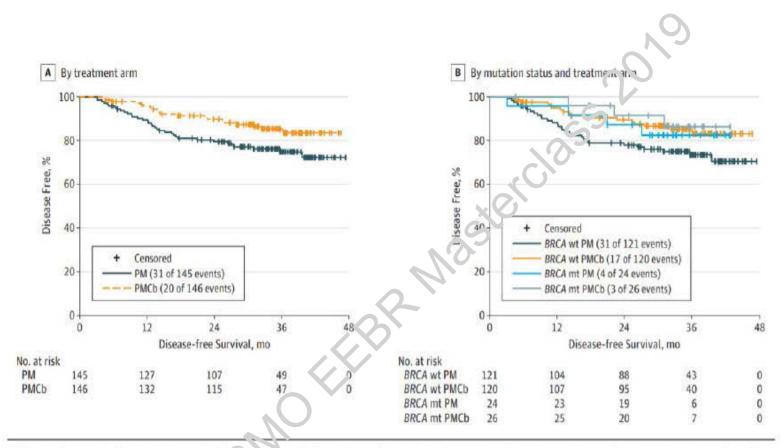
TABLE 1. Efficacy of Standard Anthracycline-Taxane Chemotherapy in TNBC Subtypes^{34,35}


Subtype	No. of Patients	F.J., %	95% CI
Basal-like 1	21	52	0.31-0.73
Basal-like 2	8	0	0.00-0.00
Mesenchymal	26	31	0.13-0.48
Mesenchymal stem cell–like	13	23	0.0001–0.45
Immunomodulatory	27	30	0.12-0.46
Luminal AR	20	10	0.03–0.23

Abbreviations: TNBC, triple-negative breast cancer; pCR, pathologic complete response; AR, androgen receptor.

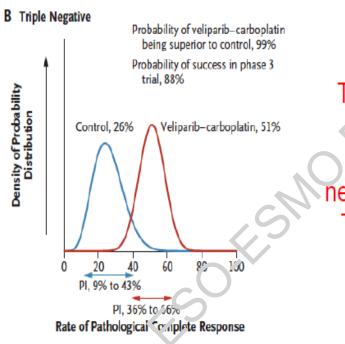

50 2018 ASCO EDUCATIONAL BOOK | asco.org/edbook


Abbreviations: AC, doxorubicin 60 mg/m² and cyclop. as namide 600 mg/m²; ddAC, dose dense AC; Cb, carboplatin; AUC, area under the curve; B, Bevacizumab; wP, weekly paclitaxel 80 mg/m²; mPLD, non-pegylated-liposomal doxorubicin; pCR, complete pations, is r sponse; na, not available; qw, every week; q 2w, every 2 weeks; q 3w, every 3 weeks; ypT0 ypN0, absence of invasive cancer and *in situ* cancer in the breast and axillary nodes; ypT0/s ypN0, absence of invasive cancer in the breast and axillary nodes; irrespective of carcinoma *in situ*. Platinum and PARPi form adducts that also acrest DNA replication forks and require BRCA1/2 for repair



Use of platinum in Neoadjuvant therapy in TNBC

Carboplatin increases Path CR in TNBC in addition to anthracyclines and taxanes

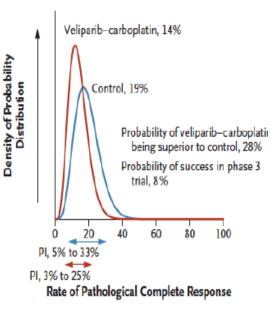


A, Disease-free survival by treatment arm. B, Disease-the survival by BRCA1 and BRCA2 mutation status and treatment arm. mt Indicates mutant; PM, paclitaxel and myocet; PMCb, paclitaxel, myocet, and carboplatine and wt, wild-type.

Hahnen et al., JAMA Oncol. 2017;3(10):1378-1385

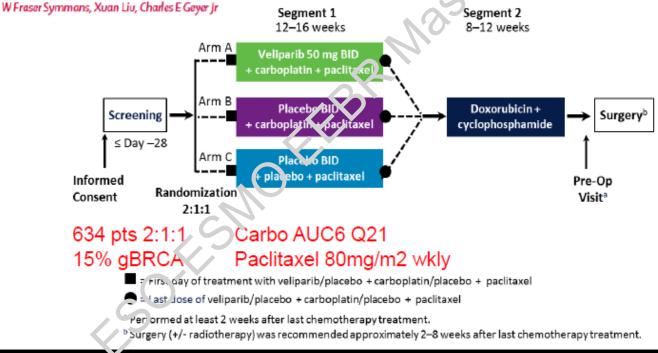
I-SPY2 trial

Paclitaxel then AC vs Paclitaxel/Veliparib/Carbo then AC

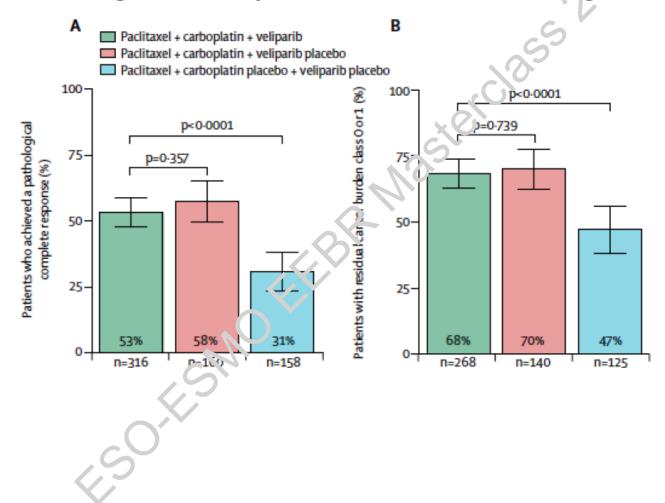

This PARPi (veliparib) / carboplatin regimen graduated I-SPY2 neoadjuvant platform with TNBC as the selection biomarker

Adaptive Randomization of Veliparib– Carboplatin Treatment ip-Breast Cancer

ORIGINAL ARTICLE


H.S. Rugo, O.I. Olopade, A. DeMichele, C. G., L.J. van 't Veer, M.B. Buxton, M. Hogarth, N.M. Hylton, M. Paoloni, J. Vernutter, W.F. Symmans, D. Yee, A.J. Chien, A.M. Wallace, H.G. Kaplon, C. Boughey, T.C. Haddad, K.S. Albain, M.C. Liu, C. Isaacs, Q.J. Khan, J.E. an, R.K. Viscusi, L. Pusztai, S.L. Moulder, S.Y. Chui, K.A. Kemmer, A.D. Ellas, K.K. Edmiston, D.M. Euhus, B.B. Haley, R. Nanda, D.W. Northfelt, C. Loschy, W.C. Wood, C. Ewing, R. Schwab, J. Lyandres, S.E. Davis, G.L. Hirst, A. Saril, D.A. Berry, and LJ. Esserman, for the I-SPY 2 Investigators*

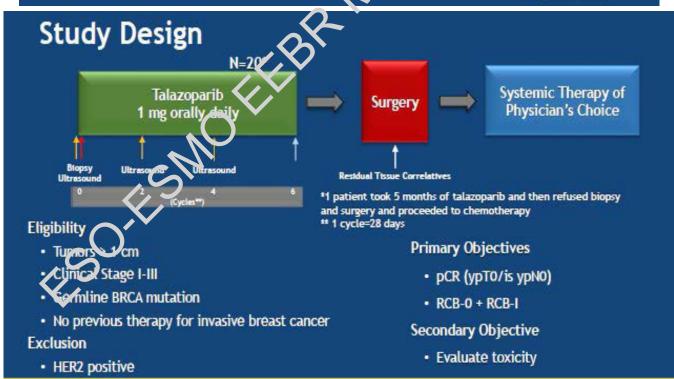
C Hormone-Receptor Positive and HER2 Negative

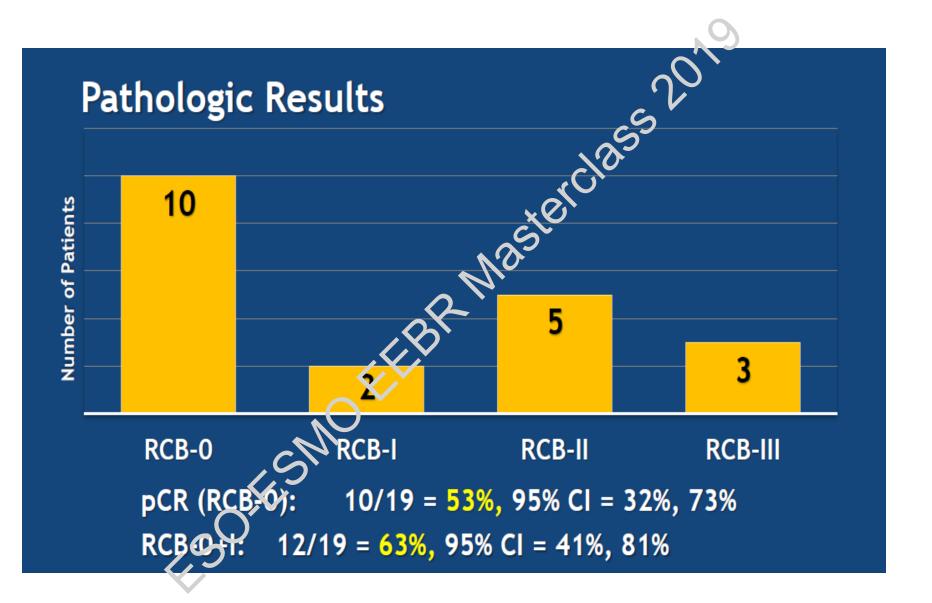


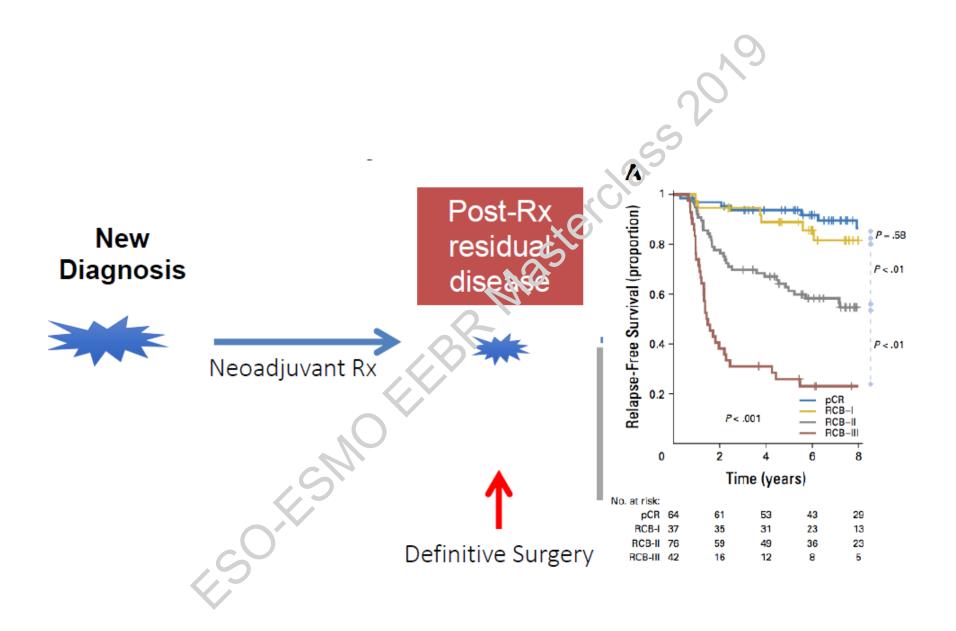
Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a raccomised, phase 3 trial

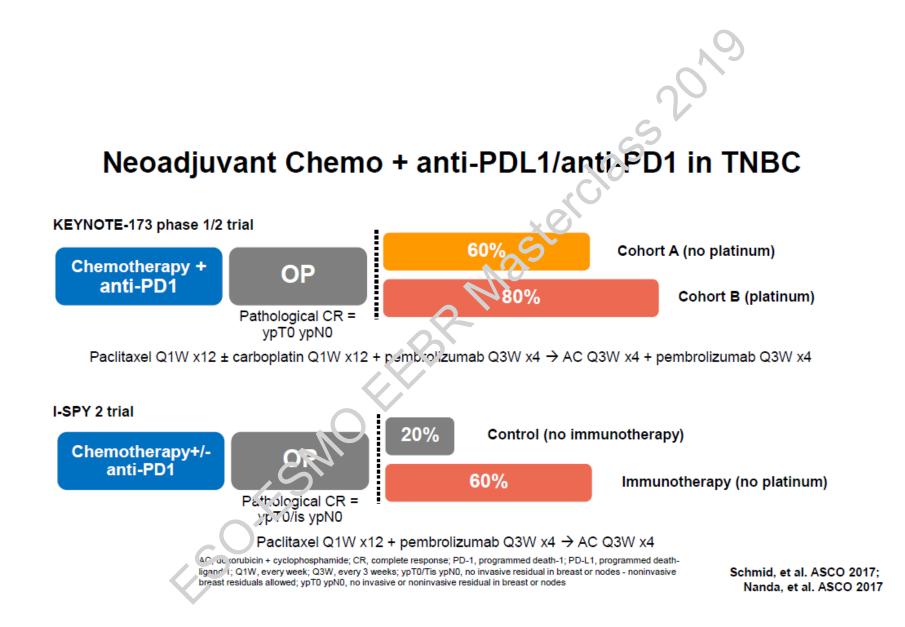
Sibylle Loibl, Joyce O'Shaughnessy, Michael Untch, William M Sikov, Hope S Rugo, Mark D McKee, Jens Fuzzer, Mehra Golshan, Gunter von Minckwitz, David Maag, Danielle Sullivan, Norman Wolmark, Kristi McIntyre, Jose J Popee Lorenzo, Otto Metzger Filho, Priya Rastogi, W France Summers, Yuan Liu, Chados F Cauge Is

Carboplatin is the main driver of increase in pathological response in I-SPY2 regimen

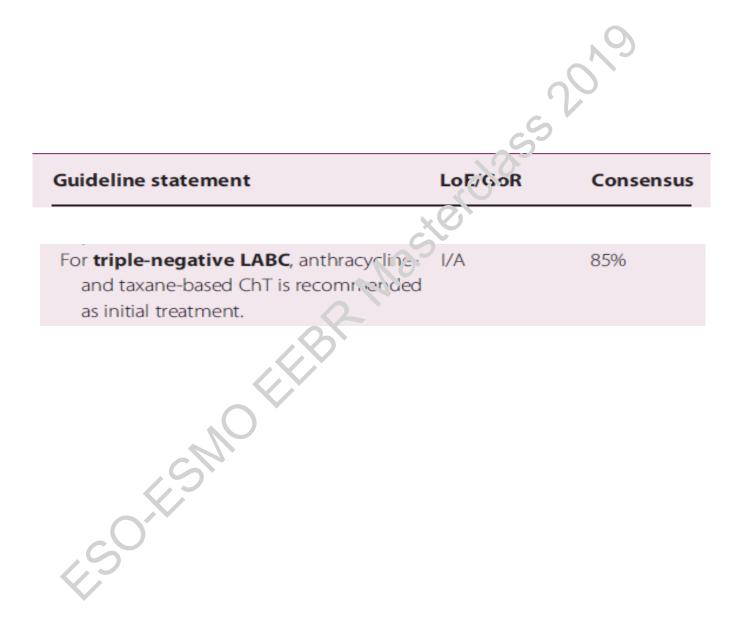



Neoadjuvant Talazoparib for Early Stage Breast Cancer Patients with a BRCA Mutation


JK Litton, M Scoggins, KR Hess, B Adrada, CH Barcenas, RK Murthy, S Damodaran, SM DeSnyder, AM Brewster, AM Thompson, GJ Whitman, NK Ibrahim, V Valero, J Schwartz-Gomez, EA Mittendorf and BK Arun

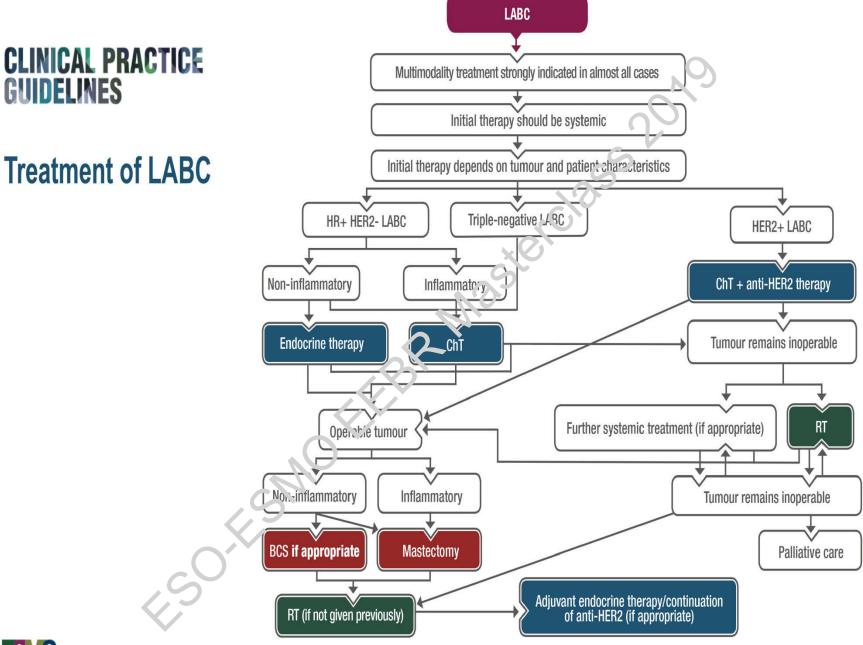

MDAnderson Cancer Center

Making Cancer History


TABLE 2. Selected Trials Evaluating the Efficacy of the Addition or Substitution of New Agents to Standard Anthracycline-Taxane Chemotherapy on pCR in TNBC

Trial	Arms	pCR	p Value
Calgb 40603 ³⁹ (443 Patients)	$P \rightarrow AC$	41%	- 0020
	PCb →AC	54%	p = .0029
Geparsixto ⁴⁰ (296 Patients)	РМВ	36.9%	n = 005
	PMBCb	53.2%	—— p = .005
I-Spy 2: Veliparib-Carboplatin Arm ⁴² (116 Patients)	$P \rightarrow AC$	26%	N/A
	5° Vi $b \rightarrow AC$	51%	—— N/A
I-Spy 2: Pembrolizumab Arm ⁴³ (249 Patients)	? -> AC	20%*	—— N/A
	$PPemb \rightarrow AC$	60%*	N/A
Geparsepto ³⁷ (276 Patients With Tnbc)	$P \rightarrow EC$	26%*	- < 001
	$nabP \rightarrow EC$	48%*	p < .001
Etna ³⁸ (219 Patients)	P → AC/EC/FEC	37.3%	NC
S	$nabP \rightarrow AC/EC/FEC$	41.3%	NS

*Estimated pCR.


Abbreviations: pCR, pathologic complete response; TNB ⁺, triple-negative breast cancer; P, paclitaxel; AC, adriamycin-cytoxan; Cb, carboplatin; M, nonpegylated liposomal doxorubicin; B, bevacizumab; V, veliparib; pemb, pembrolizumab; nabP, nab paclitaxel; EC, epirubicin-cytoxan; FEC, 5-fluorouracil, epirubicin, cytoxan; N/A, nonapplicable; NS, nonsignificant.

asco.org/edbook | 2018 ASCO EDUCATIONAL BOOK

Guideline statement	LoE/GoR	Consensus
If LABC remains inoperable after systemic therapy and eventual RT, 'palliative' mastectomy should not be done, unless the surgery is likely to result in an overall improvement in QoL.	Expert opinion/ D	1(2%
Following effective neoadjuvant systemic therapy with or without RT, surgery will be possible in many patients. This will consist of mastectomy with axillary dis- section in the majority of cases, but in selected patients with a good response, BCS may be possible.	IVA C	98%
In patients with axillary low burden of dis- ease at presentation (previously cN0- cN1) with complete response after sys- temic treatment (y cN0), sentinel lymph node biopsy can be an option, provided all the recommendations for sentinel node after primary systemic treatment are followed (i.e. dual tracer, clipping/ making positive nodes, minimum of twee sentinel nodes).	III/B	62%

	S 2019	
Guideline statement	LOE/Gog	Consensus
	<u> </u>	
Inflammatory LABC		
For inflammatory LABC, overall treatment	I/A	93%
recommendations are similar to those		
for non-inflammatory LABC, with sys-		
temic therapy as first treatment.		050/
Mastectomy with axillary dissection is rec-	VA	95%
ommended in almost all cases, even		
when there is good response to primary systemic therapy.		
Immediate reconstruction is generally not	IV/E	95%
recommended in patients with inflam-		2370
matory LAB2.		
Locorectional RT (chest wall and lymph	I/A	98%
ncdcs) is required, even when a pCR is		
achieved with systemic therapy.		

ESVO

© 2018 ESMO. All rights reserved. esmo.org/Guidelines/ Breast-Cancer/4th-ESO-ESMO-International-Consensus-Guidelines-for-Advanced-Breast-Cancer-ABC-4

Take home message

- Despite extensive clinical investigations, it has not yet been clarified whether preoperative systemic therapy would results in improved survival in comparison with the standard adjuvant therapy in any subgroup of patients. Randomized trials have demonstrated equivalent mortality for pre or postoperative application of systemic therapy
- Pateints with triple-negative/TNBC/, HER-2 positive, or ER/PgR positive/HER-2 negative(high-grade G3) breast cancer /depending on size, nodal status, comorbidity/ have the highest probability of therapeutic response
- NAT can significantly impact surgical treatment and facilitates BCS
- pCR can be used as an endpoint for early drug approval
- NAT offers great advantages for new drug development in breast cancer and for individual investigations into the mechanism of action of drugs
- Sequential biopsies could nelp to identify biomarkers of treatment resistance/response
- Concernig chemotherapy an anthracycline/cyclophosphamide/taxane regimens is the standard of care. A dose-dense anthracycline regimen may be used in patients with high-grade or hormone receptor-negative tumors.

Further Reading:

Early Breast Cancer Trialists' Collaborative Group/EBCTCG/. Long-therm outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis in individual patients data from ten randomised trials. Lancet Oncol 2018;19:27-39.

Cortazar P, Zhang L, Untch M, et al.: Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384:164-172.

Denduluri N, Miller K, O'Regan R.M. Using Neoadjuvant Approach for Evaluating Novel Therapies for Patients with Breast Cancer. 2018: ASCO Educational Book 47-55.

Reyal F, Hamy A.S, Piccart M. Neoadjuvant treatment: the future of patients with breast cancer. ESMO Open 2018;3:e000371.doi:10.1136/esmoopen-2018-000371

Vaidya J.S, Massarut S, Vaidya H.J et al.: Rethinking neoadjuvant chemotherapy for breast cancer. BMJ 2018;360:j5913

Schneeweiss A, Chia s, Hickish T. Et al.Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized place II cardiac safety study (TRYPHAENA). Ann Oncol.2013:2278-2284,2013

Gianni L, Pienkowski T, Im J.H et al.:5-year analysis o. ncoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 mindomised trial. Lancet Oncol. 2016 17(6):791-800.

Hahnen E, Lederer B, Hauke J. Et al. Germine mutation status, pathological complete response, and disease-free survival in triple-negative beinst cancer: secondary analysis of tge GeparSixto randomised clinical trial. JAMA oncol.2017;3:1378-85

Sikov WM ,Berry DA ,Perou CM et al.Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast sancer: CALGB 40603 (Alliance). J Clin Oncol. 2015; 33: 13-21

Colomber R, Saura C, Sanchez-Rovira P. et al.: Neoadjuvant Management of Early Breast Cancer: A Clinical and Investigational position statement. The Oncologist 2019;24:1-9.