Challenges in Pediatric radiotherapy

Thurandrie Naiker and Jeannettes Parkes
Why is there a need?

World

- 2018: 18.1 million
- 2040: 29.5 million

Africa

- 2018: 1.055 million
- 2025: 1.315 million
- 2030: 1.544 million
- 2040: 2.123 million
What cancers do kids get?

Estimated age-standardized incidence rates (World) in 2018, worldwide, both sexes, ages 0-14

Data source: GLOBOCAN 2018
Graph production: Global Cancer Observatory (http://gco.iarc.fr/) © International Agency for Research on Cancer 2018
Improved survivals are largely due to carefully planned Paediatric research protocols.

Bits should not be extracted and used in isolation.

Radiotherapy is an essential part of the treatment of cancer.

Over 30 African and Asian countries have no access to radiotherapy.

There is a shortfall of over 5000 radiotherapy machines in the developing world.

IAEA has initiated PACT to comprehensively address this urgent problem.

Accessibility of Radiotherapy

Number of people served by a single radiotherapy centre (latest available data 1995–2003)

- Below 500,000
- 500,000–999,999
- 1–4.9 million
- 5–9.9 million
- 10–19.9 million
- 20 million and above
- No centre
- No data
Where are the children?
From a radiation perspective... How do children differ from adults?

- Different diseases
- Survive longer
 - Severity of late effects
- Techniques of radiotherapy
- Anaesthesia
- Time

Disease incidence and epidemiology
What is the impact of providing radiotherapy?
Where do radiation Oncologists fit into things?

Adults
Children
Radiation
Chemo
Palliative care
Haematology
How is radiotherapy delivered?

Planning process
- Sedation
- Immobilization
- Localization
 - Simulation
 - CT
 - Clinical
- Planning
 - 2D
 - 3D

Treatment process
- Type of RT?
- Energy required
- Set up
- QA

Children need time, time, time!
Sedation vs. anesthesia

Who needs it?
- Anyone who can’t lie still!
 - Almost all kids < 5 years old
 - Most kids 5-6 yrs old
 - A few kids > 6 yrs

- Maximum sedation is necessary for cast making/planning.

- Less sedation may be possible at subsequent treatment dates.

- Anesthesia is seldom easily available
Cancer is more deadly in the LMICs!
At least 179,000 children < 15 years are diagnosed with cancer each year:

- HIC Incidence = 140/1m Mortality 30/1m
- LMIC Incidence = 70-100/1m Mortality 50-70/1m

80% live in LMICs, and these children account for most of the 90,000 deaths that occur.

Lancet Oncol 2013;14:e104–16
So why haven’t LMICs prioritised children’s cancer?

- More than 80% of children with cancer who live in LMIC don’t have access to modern treatment and enjoy much lower survival rates.
- Before 2000 more than 10 million children died annually ... (90% of them in 42 countries ...)

- Prematurity
- Intrapartum death
- Pneumonia
- Diarrhoea
- Malaria

And health priorities are focused on these conditions.
...But we are getting better.....

Global Under 5 Mortality

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2010</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>9.9m</td>
<td>7.6m</td>
<td>6.3m</td>
</tr>
</tbody>
</table>

So that is very encouraging!

Sub-Saharan Africa 49.6%

South Asia 32%

Lancet. 2012;379:2162-72
Lancet. 2015;385:430-40
Adapting treatment regimens for use in LMIC

- Adapted diagnosis
- Adapted staging
- Adapted risk stratification
- Adapted treatment
- Adapted response evaluation
- Adapted follow-up
<table>
<thead>
<tr>
<th>Service line</th>
<th>Level 0</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>General description</td>
<td>Pilot project</td>
<td>Some basic oncology services</td>
<td>Established pediatric oncology program with most basic services and a few state-of-the-art services</td>
<td>Pediatric oncology program with all essential services and most state-of-the-art services</td>
<td>Pediatric oncology center of excellence; state-of-the-art services and some highly-specialized services (e.g. photon or proton beam radiation therapy, MIBG therapy, phase I studies)</td>
</tr>
<tr>
<td>Typical settings</td>
<td>Centers in LIC in disadvantaged areas</td>
<td>Centers with relatively greater resources in LIC, disadvantaged areas in lower MIC</td>
<td>Centers with relatively greater resources in lower MIC, disadvantaged centers in upper MIC</td>
<td>Many centers in upper MIC, most centers in HIC</td>
<td>Selected super-specialty centers that offer very advanced and high-quality tertiary and quaternary care</td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>Radiation therapy facilities</td>
<td>None</td>
<td>Cobalt machine</td>
<td>Cobalt machine*/Linear accelerator *Cobalt machine with 3-D planning capability in areas with poor electricity supply</td>
<td>Linear accelerator with fully integrated planning system</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy planning tools</td>
<td>None</td>
<td>2D planning</td>
<td>3D planning available to most patients</td>
<td>3D planning, full conformal radiation therapy available, intensity-modulated RT and/or VMAT available to some patients</td>
</tr>
<tr>
<td></td>
<td>Radiation Oncologists</td>
<td>None</td>
<td>Radiation Oncologists with adult expertise</td>
<td>Radiation Oncologists with some pediatric experience</td>
<td>Radiation Oncologists with pediatric expertise</td>
</tr>
<tr>
<td></td>
<td>Anesthesia for RT</td>
<td>None</td>
<td>Sedation only</td>
<td>Sedation/anesthesia from general anesthesiologist available for some pediatric patients</td>
<td>Sedation/anesthesia from Pediatric anesthesiologist available for most pediatric patients</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy personnel (Medical physicists/ RTTs)</td>
<td>None</td>
<td>Few personnel, no pediatric expertise</td>
<td>Adequate personnel with some pediatric expertise</td>
<td>Adequate personnel with advanced technique and pediatric expertise</td>
</tr>
<tr>
<td></td>
<td>Radiation therapy effective access</td>
<td>None</td>
<td>Radiation therapy available to some patients some of the time; frequent delays</td>
<td>Conformal radiation therapy available to most patients most of the time; occasional delays</td>
<td>Modern radiation therapy options reliably available to all patients in a timely way</td>
</tr>
</tbody>
</table>
Adapting the technology to available resources.....
Protocol development is critical

<table>
<thead>
<tr>
<th>Pre-treatment preparation including anesthetic requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment imaging</td>
</tr>
<tr>
<td>Specification of treatment prescription:</td>
</tr>
<tr>
<td>Volume specification</td>
</tr>
<tr>
<td>Absorbed dose prescription</td>
</tr>
<tr>
<td>Fractionation and treatment time</td>
</tr>
<tr>
<td>Relation to concomitant therapies</td>
</tr>
<tr>
<td>Surgery</td>
</tr>
<tr>
<td>Drug therapy</td>
</tr>
<tr>
<td>Treatment planning</td>
</tr>
<tr>
<td>Treatment technique</td>
</tr>
<tr>
<td>Dose computation</td>
</tr>
<tr>
<td>Treatment plan evaluation</td>
</tr>
<tr>
<td>Image guidance schedule and tolerances</td>
</tr>
<tr>
<td>In-vivo-dosimetry</td>
</tr>
<tr>
<td>Quality management</td>
</tr>
<tr>
<td>Pre treatment patient-specific dosimetry</td>
</tr>
</tbody>
</table>

Once you have chosen a protocol:
- You must fastidiously use it!
- You must collect all the data
- You must audit your outcomes
- And you must adjust based on those outcomes!

As NICE in the UK points out an AUDIT CYCLE is …
- AUDIT – ADJUST – AUDIT

And then you must publish it!
Online Networks

<table>
<thead>
<tr>
<th>Organizations</th>
<th>Education Initiatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS LMIC Resources & Forum</td>
<td>www.intpros.org</td>
</tr>
<tr>
<td>Pediatric Radiation Oncology in LMIC working group of SIOP-PODC</td>
<td>Monthly meetings at www.cure4kids.org</td>
</tr>
<tr>
<td>Chart rounds</td>
<td>Scheduled meetings between leaders at cancer treatment institutions and physicians & physicists in various locations to discuss patient management & treatment plans. www.chartrounds.com</td>
</tr>
<tr>
<td>AFRONET</td>
<td>Multidisciplinary virtual tumor board</td>
</tr>
</tbody>
</table>

PROS LMIC Resources & Forum

The PROS LMIC Resources & Forum is a platform for professionals working in LMIC (Low and Middle Income Countries) to share knowledge and resources. The website, www.intpros.org, is a hub for accessing information, networking, and collaborating with peers.

Pediatric Radiation Oncology in LMIC working group of SIOP-PODC

This group focuses on radiation oncology in LMIC and organizes monthly meetings. The meetings are held at www.cure4kids.org, providing a platform for discussions on patient management and treatment plans.

Chart rounds

Chart rounds are scheduled meetings between leaders at cancer treatment institutions and physicians & physicists in various locations to discuss patient management & treatment plans. These rounds are facilitated through www.chartrounds.com.

AFRONET

AFRONET is a multidisciplinary virtual tumor board that connects professionals to discuss and collaborate on cases, providing a virtual space for global oncology collaboration.
Support for NGOs, advocacy groups and awareness campaigns
Thank you to Jeannette for her slides

Our Paediatric MDT at RXH/GSH

Radiotherapy team

Our patients