

Precision Medicine in Epithelial Ovarian Cancer

lain McNeish

Professor of Oncology, Imperial College London

Disclosures

- I have sat on Advisory Boards for Clovis Oncology, Tesaro, AstraZeneca and Takeda.
- Co-chief investigator ARIEL2 (Clovis Oncology)
- Chief Investigator OCTAVE (PsiOxus Therapeutics)
- My institution receives grant support from AstraZeneca

Ovarian cancer is not like a Mondrian painting

Ovarian cancer is more like this

Current view of ovarian cancer biology

Data on non-HGSC disease are very limited

CALYPSO

Histology	Number	%
Serous	700	71.9
Endometrioid	73	7.5
Clear cell	27	2.8
Mucinous	17	1.7
Other	104	10.7
Unspecified	52	5.3
TOTAL	973	

OCEANS

Histology	Number	%
Serous	391	80.8
Endometrioid	29	6.0
Clear cell	15	3.1
Mucinous	4	0.8
Other	45	9.3
TOTAL	484	

Clear cell carcinoma - response rates are dismal

Table 2. Response to second-line chemotherapy in the patients with treatment-free period 6 months or more (group A) and with treatment-free period less than 6 months (group B)

Regimen	PR	SD	PD	Response rate ^a (%)	Non-PD rate (%)
Group A					
CAP, CP	1	0	3	25	25
Platinum + etoposide	0	0	2	0	0
Paclitaxel + platinum	0	2	4	0	33
Docetaxel + platinum	0	0	1	0	0
CPT-11 + platinum	1	3	3	14	57
CPT-11 + mitomycin C	0	0	3	0	0
Docetaxel	0	0	1	0	0
Subtotal	2 (8%)	5 (21%)	17 (71%)	8	29
Group B					
CAP, CP	0	0	5	0	0
Platinum + etoposide	2	0	9	18	18
Paclitaxel + platinum	0	2	15	0	12
Docetaxel + platinum	0	0	3	0	0
Weekly paclitaxel	0	0	2	0	0
CPT-11 + platinum	1	2	5	13	38
CPT-11 + mitomycin C	0	1	2	0	33
CPT-11 + docetaxel	0	0	1	0	0
MEP	0	1	0	0	100
Subtotal	3 (6%)	6 (12%)	42 (82%)	6	18
Total	5 (7%)	11 (15%)	59 (79%)	6.7	21

Takano et al (2008) IJGC 18:937

NiCCC

(ENGOT-ov36)

A Randomised Phase II study Of Nintedanib (BIBF1120) Compared To Chemotherapy in Patients With Recurrent Clear Cell Carcinoma Of The Ovary Or Endometrium

EudraCT Number: 2013-002109-73

ISRCTN50772895

NiCCC Recruitment

NÍCCC

Low grade serous carcinoma

Array BioPharma Announces Decision To Discontinue MILO Study In Ovarian Cancer

1st April 2016

Case report

Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment

Chanhee Han, Stefania Bellone, Luca Zammataro, Peter E. Schwartz, Alessandro D. Santin*

Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA

Han et al (2018) Gynecol Onc Rep 25:41

Case report

Dramatic clinical response following dabrafenib and trametinib therapy in a heavily pretreated low grade serous ovarian carcinoma patient with a BRAF V600E mutation

Alberto A. Mendivil^a, Paul K. Tung^b, Randy Bohart^c, Karen Bechtol^a, Bram H. Goldstein^{a,*}

Mendevil et al (2018) Gynecol Onc Rep 26:41

https://www.prnewswire.com/news-releases/array-biopharma-announces-decision-to-discontinue-milo-study-in-ovarian-cancer-300244593.html

a Gynecologic Oncology Associates, Newport Beach, CA 92663, United States

b University of California, Irvine, Department of Radiological Sciences, 1001 Health Sciences Road, Irvine, CA 92697-3950, United States

^c Oso Home Care, 17175 Gillette Avenue, Irvine, CA 92614, United States

Current view of ovarian cancer biology

Ovarian high-grade serous carcinoma

Mostly arises in distal fallopian tube

Journal of Pathology

J Pathol 2007; 211: 26-35

Published online 20 November 2006 in Wiley InterScience (www.interscience.wiley.com) **DOI:** 10.1002/path.2091

Original Paper

Fallopian tube epithelium p53 signature Tubal intraepithelial carcinoma carcinoma 20 µm

A candidate precursor to serous carcinoma that originates in the distal fallopian tube

Y Lee, ^{1†} A Miron, ^{2†} R Drapkin, ^{1,3} MR Nucci, ¹ F Medeiros, ¹ A Saleemuddin, ¹ J Garber, ³ C Birch, ¹ H Mou, ⁴ RW Gordon, ² DW Cramer, ⁵ FD McKeon ⁴ and CP Crum ¹*

Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA

²Department of Cancer Biology, Dana-Farber Cancer Institute, USA

³Department of Medical Oncology, Dana-Farber Cancer Institute, USA

⁴Department of Cell Biology, Harvard Medical School, USA

⁵Obstetrical and Gynecologic Epidemiology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA

Ovarian high-grade serous carcinoma

• Ovarian surface epithelium may still contribute...

Both Fallopian Tube and Ovarian Surface Epithelium Can Act as Cell-of-Origin for High Grade Serous Ovarian Carcinoma

Shuang Zhang[#], Tao Zhang, Igor Dolgalev, Hao Ran, Douglas A. Levine, Benjamin G. Neel[#]

Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.

[#]Corresponding authors: Benjamin G. Neel, New York University School of Medicine, 522 First Avenue, Smilow Building 12th Floor, Suite 1201, New York, NY 10016. Phone: 212-263-3019; Fax: 212-263-9190; E-mail: Benjamin.Neel@nyumc.org; Shuang.Zhang@nyumc.org

Genomic aberrations in HGSC

HGSC is driven by copy number (CN) change

This is normal...!

Most progress has been in good-prognosis disease

PARP inhibitors in *BRCA1/2*-mutated disease

Genomic aberrations beyond BRCA1/2

Methylation states

Partial

Kondrashova et al (2018) Nat. Commun 9:3970

Methylation and rucaparib - ARIEL2

BRCA revertant mutations

Resistance to therapy caused by intragenic deletion in *BRCA2*

Stacey L. Edwards¹, Rachel Brough¹, Christopher J. Lord¹, Rachael Natrajan¹, Radost Vatcheva¹, Douglas A. Levine², Jeff Boyd³, Jorge S. Reis-Filho¹ & Alan Ashworth¹

Secondary mutations as a mechanism of cisplatin resistance in *BRCA2*-mutated cancers

Wataru Sakai^{1,2}, Elizabeth M. Swisher^{3,4}, Beth Y. Karlan⁵, Mukesh K. Agarwal⁶, Jake Higgins^{4,7}, Cynthia Friedman¹, Emily Villegas^{1,2}, Céline Jacquemont^{1,2}, Daniel J. Farrugia⁶, Fergus J. Couch⁶, Nicole Urban² & Toshiyasu Taniguchi^{1,2}

BRCA reversion mutations in pre-rucaparib treatment cfDNA and tumour biopsy

BRCA reversion mutations in pre-rucaparib treatment cfDNA and tumour biopsy

Platinum status	Cases with primary BRCA and TP53 mut detected	Cases with BRCA reversion mut detected	BRCA reversion mut frequency
Sensitive	48	1*	2.1%
Resistant	35	5	14.3%
Refractory	14	2	14.3%

^{*} Detected at MAF=0.42%

Overall reversion rate in cfDNA pre-rucaparib = 8/97 (8.2%)

ARIEL2 - PFS according to reversion vs non-reversion

Platinum resistant/refractory cases

BRCA reversion mutations detected in post-progression cfDNA

Platinum status	Cases with primary BRCA and TP53 mut detected	Cases with <i>BRCA</i> reversion mut detected	BRCA reversion mut frequency
Sensitive	27	3 (1 also found in pre- tx)	11.1%
Resistant	27	8 (5 also found in pre- tx)	29.6%
Refractory	11	4 (1 also found in pre- tx)	36.4%

Overall reversion rate in cfDNA at progression = 15/65 (23.1%)

Can we identify meaningful patterns in apparent CN chaos?

Mutational signatures

- Mutations are an archaeological record of exposure to mutational processes
- Signatures are the patterns of mutational processes
- Individual cancers have multiple mutational signatures

Can we do the same with copy number?

CN signature identification

a

Compute absolute CN from shallow WGS

Derive CN feature distributions

Fit optimal number of mixture model components

Are the CN signatures robust?

b

CN signatures

Are the CN signatures robust?

b

Do CN signatures reflect the underlying mutational processes?

CN signatures predict survival

Patients have multiple signatures

BRCA2 germline mutation carriers + somatic LOH (n=4)

Could CN signatures predict treatment?

BRCA2 germline mutation carriers + somatic LOH (n=4)

What about relapse?

Comparison of diagnosis and relapse

Overall Similar Genomic LOH Levels Between Matched Archival Tumours and Screening Biopsies

All patients (117 matched pairs)

	LOH-high archival	LOH-low archival
LOH-high screening	67	17
LOH-low screening	0	33

Key challenges moving biology to the clinic

Conclusions

- Knowledge of tumour biology into our treatment strategies
- Trials in the rarer subtypes completely essential
- CN signatures suggest rational approaches for combination therapy
- Assessment of disease at relapse important including methylation and cfDNA
- Functional assays required to assess what processes are active at any given time