TESTICULAR CANCER: TREATMENT STRATEGIES, FERTILITY PRESERVATION AND ENDOCRINE FOLLOW-UP

Giovanni Rosti
Medical Oncologist, San Matteo Hospital, IRCCS Pavia, Italy

Andrea Garolla
Andrologist, Unit of Human Reproductive Pathology – Department of Medicine, University of Padua, Italy
INTERNATIONAL VARIATION IN ESTIMATES OF NATIONAL AGE-STANDARDISED TESTICULAR CANCER (A) INCIDENCE RATES AND (B) MORTALITY RATES, ALL AGES.

RELATIVE RISK OF TESTICULAR CANCER IS RELATED TO THE PRENATAL ENVIRONMENT

The first generation of Finnish immigrants to Sweden (born in FIN, but raised in S) had the risk of TC equal to that in FIN (low)*

The second generation (born in S) had the same risk as the Swedish population (higher than in FIN)*

*Hemminki K et al. Int J Cancer 2002;99(2):218-228;
HISTOLOGIC CLASSIFICATION

I. Germ cell neoplasms (90–95%)

II. Sex cord-stromal neoplasms (4%)
 A. Leydig cell tumour (3%)
 B. Sertoli cell tumour (1%)
 C. Sertoli-Leydig cell tumour (rare)
 D. Granulosa cell tumours (<1%)
 E. Tumours in the fibroma/thecoma group (rare)
 F. Mixed and indeterminant (unclassified) sex cord-stromal tumours (<1%)

III. Mixed germ cell-sex cord-stromal neoplasms (<1%)
 A. Gonadoblastoma (0.5%)
 B. Other mixed germ cell-sex cord-stromal tumours (rare)

IV. Lymphoid and Haematopoietic tumours (<1%)
 A. Lymphoma (? 1% as true primary neoplasm)
 B. Plasmacytoma (rare) and multiple myeloma
 C. Granulocytic sarcoma and leukemic infiltrates (rare)
 D. Miscellaneous others, including metastatic tumours (1–2 %)
The hypothetical development of the testicular germ cell tumors according to Ulbright et al. The direct descendant of IGCNU is probably the seminoma (S). Embryonal carcinomas (EC) develop from seminomas. EC can undergo a somatic transformation to teratoma (T) or an extra embryonic one to yolk sac (YST) tumor and choriocarcinoma (CC). Somatic type tumors develop from teratoma. Deviations from this sequence are purportedly possible but infrequent. it = intratubular; SS = spermatocytic seminoma; STGC = syncytiotrophoblastic cells; P = pediatric.
GERM CELL TUMOURS

GONADAL
95-98%

EXTRAGONADAL
2-5%

- MEDIASTINAL (ant. mediastinum)
- RETROPERITONEAL
- PINEAL, SACRO-COCIGEAL, ETC.
STAGE 1 (disease confined to the testis)

Work up: CT scan thorax and abdomen, LDH, alfa-fetoprotein, beta-HCG scrotal US
PET/CT is never recommended
CLINICAL STAGE 1 SEMINOMA
(70-75% of all seminoma)

- Active surveillance
- Radiotherapy 20 Gy*
- Carboplatin AUC 7 one course

Prognostic factors: tumour size > 4 cm, vascular invasion, beta HCG > 200
Moertensen ASCO 2013

*Less used in the present days
Relapse rate in Stage 1 seminoma: Active surveillance in 1822 patients

- **No. of relapses:** 355 / 1822 (19.5 %)

 - Time to relapse:
 - < 2 years: 257 (72.4%) patients
 - 2–5 years: 72 (20.3%) patients
 - > 5 years: 26 (7.3%) patients

 - **Median time to relapse:**
 - 13.7 months (range 1.2-173.3 months)
CLINICAL STAGE 1 NON-SEMINOMA

- Active surveillance*
- 1-2 courses of BEP
- RPLND nerve sparing**

*In some countries (i.e. Denmark, Canada is the main option)
** When chemotherapy or surveillance is not accepted
Lymphatic spread is rather easy to be defined.
The lymphatic way continues

- Lumbar ducts
- Cisterna chyli
- Thoracic duct
- Posterior mediastinum
- Left supraclavicular area
TUMOUR MARKERS IN GERM CELL TESTICULAR NEOPLASMS

Tumour markers

- Alfa-fetoprotein: Never in seminoma
- Beta-HCG
- LDH (marker of masses)

False tumour markers

- Hepatitis, liver damage, week-end drinkers, rare familiar cases for alfa
- Marijuana abuse, LH elevation for beta
Approaches in Stage II

<table>
<thead>
<tr>
<th>Stage II disease (retroperitoneal disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IIA: Nodal involvement up to 2 cm</td>
</tr>
<tr>
<td>Stage IIB: Nodal involvement 2-5 cm</td>
</tr>
<tr>
<td>Stage IIC: Nodal involvement > 5 cm</td>
</tr>
</tbody>
</table>

- If seminoma Stage IIA RT or chemotherapy. In higher stages: chemotherapy
- If non seminoma any stage II: chemotherapy. In stage II non seminoma with marker negative disease, surgery or even short time follow-up may be considered
Relationship IGCCCG → prognosis

Good @ 5 years
- PFS 89%
- OS 92%

Intermediate @ 5 years
- PFS 75%
- OS 80%

Poor @ 5 years
- PFS 41%
- OS 48%

Sem.

Good @ 5 years
- PFS 82%
- OS 86%

Intermediate @ 5 years
- PFS 67%
- OS 72%

PRACTICAL CRITERIA FOR FIRST-LINE TREATMENT DECISION

Seminoma + elevated beta-HCG and/or LDH = SEMINOMA
Seminoma + elevated AFP = NON-SEMINOMA
Seminoma + Mature teratoma = NON-SEMINOMA

Primary mediastinal = POOR PROGNOSIS
Metastases to the mediastinum = GOOD PROGNOSIS

CNS metastases = POOR PROGNOSIS NON SEM
INTERMEDIATE PROGNOSIS SEM
Primary CNS = GOOD PROGNOSIS (???)

(No data from IGCCCG)
BEP WAS, IS AND PROBABLY WILL BE THE STANDARD

WHAT TO DO IN SECOND-LINE

- Second line schedules include cisplatin

- VeIP, VIP, PEI, TIP; no data regarding a possible “best combination”

- Overall 25-40% of relapsed patients achieve cure (including also surgery)

- Interesting results have been obtained with High-Dose Chemotherapy (HDCT)
HDCT as Second-Line for Relapsed/Refractory GCTs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of study</th>
<th>No. of patients</th>
<th>Treatment</th>
<th>OS (%)</th>
<th>PFS (%)</th>
<th>mFU (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodenhuis et al. [34]</td>
<td>Prospective, phase II</td>
<td>35</td>
<td>Conventional induction chemotherapy followed by two cycles of HD-CTC</td>
<td>Not reported</td>
<td>54</td>
<td>37</td>
</tr>
<tr>
<td>Bhatia et al. [33]</td>
<td>Prospective, phase II</td>
<td>65</td>
<td>One to two cycles of conventional VelP followed by two cycles of HD-CE</td>
<td>Not reported</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>Motzer et al. 2000 [32]</td>
<td>Prospective, phase II</td>
<td>37</td>
<td>Two cycles of TI followed by three cycles of HD-CE</td>
<td>54</td>
<td>49</td>
<td>31</td>
</tr>
<tr>
<td>Rick et al. 2001 [41]</td>
<td>Prospective, phase II</td>
<td>62</td>
<td>Three cycles of standard TIP followed by one cycle of HD-CET</td>
<td>30 (at 3 years)</td>
<td>25 (at 3 years)</td>
<td>36</td>
</tr>
<tr>
<td>Pico et al. [38]</td>
<td>Prospective, randomized, phase III</td>
<td>128 (SDCT) versus 135 (HDCT)</td>
<td>Four cycles of conventional VelP or VIP versus three cycles of conventional VelP or VIP followed by one cycle of HD-CE</td>
<td>53 versus 53 (at 3 years)</td>
<td>35 versus 42 (at 3 years)</td>
<td>45</td>
</tr>
<tr>
<td>Einhorn et al. [36]</td>
<td>Retrospective</td>
<td>135</td>
<td>Two cycles of HD-CE</td>
<td>Not reported</td>
<td>70</td>
<td>48</td>
</tr>
<tr>
<td>Lorch et al. [40]</td>
<td>Prospective, randomized, phase II</td>
<td>111 (sequential HDCT) versus 105 (single HDCT)</td>
<td>Two cycles of HD-CE versus three cycles of VIP + one cycle of HD-CE</td>
<td>47 versus 45 (at 5 years)</td>
<td>49 versus 39 (at 5 years), $P = 0.057$</td>
<td></td>
</tr>
<tr>
<td>Feldman et al. [37]</td>
<td>Prospective, phase I-II</td>
<td>107</td>
<td>Two cycles of TI followed by three cycles of HD-CE</td>
<td>52 (at 5 years)</td>
<td>48 (at 5 years)</td>
<td>61</td>
</tr>
</tbody>
</table>

Unless specified, OS and PFS rates refer to mFU.

Conventional-Dose Versus High-Dose Chemotherapy As First Salvage Treatment in Male Patients With Metastatic Germ Cell Tumors: Evidence From a Large International Database
After first-line...

Not all relapses look alike!
HOW TO IDENTIFY THE PROGNOSTIC SCORE: IGCCCG-2

<table>
<thead>
<tr>
<th>SCORE POINTS</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary site</td>
<td>Gonadal</td>
<td>Extragonadal</td>
<td>-</td>
<td>Mediastinal Nonseminoma</td>
<td></td>
</tr>
<tr>
<td>Prior Response</td>
<td>CR/PRm-</td>
<td>PRm+/SD</td>
<td>PD</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PFI</td>
<td>> 3 months</td>
<td>≤ 3 months</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AFP salvage</td>
<td>Normal</td>
<td>≤ 1000</td>
<td>> 1000</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HCG salvage</td>
<td>≤ 1000</td>
<td>> 1000</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LBB</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Step 1: Calculate score sum (values from 0 to 10)

Step 2: Form temporary category from score sum (0)=0; (1 or 2)=1; (3 or 4)=2; (5 or more)=3

Step 3: Correct temporary category for histology

 "pure seminoma = .1"
 "non-seminoma or mixed histologies = 0"

Step 4: FINAL PROGNOSTIC SCORE

(-1=Very low risk; 0=Low risk; 1=Intermediate risk; 2=High risk; 3=Very high risk)

Legend: PFI=progression-free interval; AFP=alpha-fetoprotein; HCG=human chorionic gonadotrophin; LDH=lactate dehydrogenase; LBB=liver, bone, brain metastases; CR=complete remission; PRm=partial remission, positive markers; PRm+=partial remission, positive markers; SD=stable disease; PD=progressive disease.

DIFFERENT RISK GROUPS, DIFFERENT OUTCOMES
TIGER TRIAL OPEN

Joint study US American Alliance for Clinical Trials in Oncology and the European Organisation for Research and Treatment of Cancer (EORTC).

Inclusion Criteria
- Histologically-confirmed GCT
- PD following 1st-line chemo
- ≥3 but ≤6 cycles of prior cisplatin-based chemo
- Adequate organ function for HDCT
- Any primary site

Secondary Endpoints
- PFS
- Favorable RR (CR / PR-m)
- Toxicity & treatment-related mortality
- Validation of IPFSG model
- Biological correlates (SNP analyses)

PD = progression of disease; CR = complete response; PR-m = PR with normal tumor markers
IPFSG = International Prognostic Factors Study Group
SURGERY OF RESIDUAL DISEASE

Advanced germ cell tumours often after chemotherapy show residual mass(es). The residual disease may contain:

- Fibrosis
- Necrosis
- Viable cells
- Teratoma*

*Teratoma is extremely rare in seminoma
NSGCTs
Any residual mass > 1 cm diameter and normalised serum tumour markers
Any residual mass > 1 cm in diameter and plateauing serum tumour markers
Residual masses < 1 cm in diameter and mature teratoma in the primary orchietomy specimen
Marker-negative in-field recurrence after prior RPLND
Residual marker-negative or plateauing markers after salvage chemotherapy
Desperation RPLND in patients with chemoresistant and completely respectable masses
Teratoma: its role in residual disease

ECA + T
Chemotherapy

Teratoma Growing Syndrome

Courtesy of Dr G Rosti
It is not just a question of teratoma!

TWIT - THE MOST FREQUENTLY REPORTED SOMATIC TYPE MALIGNANCIES DEVELOPED IN TERATOMA

- Rhabdomyosarcoma
- PNET
- Chondrosarcoma
- Osteosarcoma
- Malignant Schwannoma
- Nephroblastoma (Wilms tumor)
- Carcinoid
- Adenocarcinoma
- Squamous carcinoma
- Neuroendocrine carcinoma

Courtesy of Dr G Rosti
SURGERY POST CHEMOTHERAPY

Courtesy of Dr G Rosti
The role of PET/TC in the evaluation of residual disease

No indication in non seminoma cases

Mandatory in seminoma
SEMINOMA

Overall PET and CT (discrimination of residual tumour size, < or ≥ 3 cm) resultsa

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mode</th>
<th>TN (n %)</th>
<th>FN (n %)</th>
<th>TP (n %)</th>
<th>FP (n %)</th>
<th>SENS (95% CI)</th>
<th>SPEC (95% CI)</th>
<th>NPV (95% CI)</th>
<th>PPV (95% CI)</th>
<th>ACC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All lesion sizes</td>
<td>127</td>
<td>PET</td>
<td>87 (69)</td>
<td>7 (6)</td>
<td>14 (11)</td>
<td>19 (15)</td>
<td>67% (45–83)</td>
<td>82% (74–88)</td>
<td>93% (85–96)</td>
<td>42% (27–59)</td>
<td>80% (72–86)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>47 (37)</td>
<td>7 (6)</td>
<td>14 (11)</td>
<td>59 (46)</td>
<td>67% (45–83)</td>
<td>44% (35–54)</td>
<td>87% (76–94)</td>
<td>19% (12–30)</td>
<td>48% (40–57)</td>
</tr>
<tr>
<td>Lesions <3 cm</td>
<td>54</td>
<td>PET</td>
<td>39 (72)</td>
<td>4 (7)</td>
<td>3 (6)</td>
<td>8 (15)</td>
<td>43% (16–75)</td>
<td>83% (70–91)</td>
<td>91% (78–96)</td>
<td>27% (10–57)</td>
<td>78% (65–87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>47 (87)</td>
<td>7 (13)</td>
<td>0*</td>
<td>0*</td>
<td>0%*</td>
<td>100%*</td>
<td>87% (76–94)</td>
<td>— (NA)</td>
<td>87% (76–94)</td>
</tr>
<tr>
<td>Lesions ≥3 cm</td>
<td>73</td>
<td>PET</td>
<td>48 (66)</td>
<td>3 (4)</td>
<td>11 (15)</td>
<td>11 (15)</td>
<td>79% (52–92)</td>
<td>81% (70–89)</td>
<td>94% (84–98)</td>
<td>50% (31–69)</td>
<td>81% (70–88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>0*</td>
<td>0*</td>
<td>14 (19)</td>
<td>59 (81)</td>
<td>100%*</td>
<td>0%*</td>
<td>— (NA)</td>
<td>19% (12–30)</td>
<td>19% (12–30)</td>
</tr>
</tbody>
</table>

*Per definition

PET, positron emission tomography; CT, computed tomography; TN, true negative; FN, false negative; TP, true positive; FP, false positive; SENS, sensitivity; SPEC, specificity; NPV, negative predictive value; PPV, positive predictive value; ACC, accuracy; CI, confidence interval; NA: not applicable.
TESTICULAR CANCER: FERTILITY PRESERVATION AND ENDOCRINE FOLLOW-UP
SCENARIO

Testicular cancer is the most common cancer in young men in Western populations

Its incidence is increasing in many countries worldwide

Mortality rates are declining and most men are cured

An understanding of the risks and long-term side effects of treatment are important in managing men with this disease (particularly those at fertility age)

FERTILITY PRESERVATION: AGENDA

Who is candidate for?

Why to do it?

When to preserve fertility?

How to preserve?

Endocrine follow-up
WHO IS CANDIDATE FOR?

More than 18,000 young males/year aged between 15 and 40 years (reproductive age) develop a testicular cancer
WHO IS CANDIDATE FOR?

Box 6.1 Reasons for cryopreservation of spermatozoa

Donor semen

- semen from healthy donors known or presumed to be fertile may be stored for future use. These donors may be recruited by a clinic or sperm bank and their spermatozoa used anonymously. Alternatively, the recipients may know the donors.
- Donor spermatozoa can be used for AI, IUI, IVF or ICSI:
 - for the partner of an infertile man with no live spermatozoa or elongated spermatozoa suitable for ICSI, or where treatment has failed or is too costly;
 - to prevent transmission of an inherited disorder;
 - to prevent heavy haemolytic anaemia from blood group incompatibility;
 - to prevent congenital defects in the child (in the case of XXY males).

Fertility preservation

Semen may be obtained and stored before a man undergoes a procedure or exposure that might prevent or impair his fertility, such as:

- **vasectomy** (in case of a future change in marital situation or desire for more children);
- **treatment with cytotoxic agents or radiotherapy, which is likely to impair spermatogenesis permanently** (Meseguer et al., 2006; Schmidt et al., 2004);
- active duty in a dangerous occupation, e.g. in military forces, in countries where posthumous procreation is acceptable.

- **severe oligospermia or intermittent presence of motile spermatozoa in the semen** (as backup for ICSI) (Bézine et al., 1995);
- **treatment of infertility that may not persist**, such as surgery for genital tract obstruction or gonadotrophin treatment for hypothalamic-pituitary hypogonadism;
- **the need for special collection, such as assisted ejaculation for patients with spinal cord injury, spermatozoa from retrograde ejaculation in urine, or surgical collection from the genital tract**;
- **men who are unable to provide fresh semen on the day of an ART procedure**.

Minimizing infectious disease transmission

For men with HIV controlled by antiretroviral therapy, samples with undetectable viral load may be stored for IUI, IVF or ICSI. To attempt conception while reducing the risk of transmission of HIV to the female partner.
WHY TO PRESERVE?

Because it is strongly suggested by WHO guidelines

Because 3/4 of cancer patients aged below 35 years have thought about the future and are interested in research treatments to help preserve fertility

Because 81% of adolescents with cancer and 93% of their parents are interested in options to help preserve fertility during cancer treatments, but they are not willing to postpone treatment for this purpose

In patients diagnosed with testicular cancer, pre-treatment sperm DNA fragmentation levels are not significantly different from that of proven fertile controls. However, after chemotherapy DNA fragmentation results significantly higher than pre-treatment values.

* Smit et al., *Hum Reprod* 2010; 25: 1877-83

Table 1 The risk of chemotherapy for impairment of spermatogenesis (adapted from Wallace WH *et al.* Lancet oncology 2005; 209–218)

<table>
<thead>
<tr>
<th>High risk</th>
<th>Medium risk</th>
<th>Low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide</td>
<td>Cisplatin</td>
<td>Vincristine</td>
</tr>
<tr>
<td>Ifosfamide</td>
<td>Carboplatin</td>
<td>Methotrexate</td>
</tr>
<tr>
<td>Chlormethine</td>
<td>Doxorubicin</td>
<td>Dactinomycin</td>
</tr>
<tr>
<td>Busulfan</td>
<td>BEP</td>
<td>Bleomycin</td>
</tr>
<tr>
<td>Melphalan</td>
<td>ABVD</td>
<td>Mercaptopurine</td>
</tr>
<tr>
<td>Procarbazine</td>
<td></td>
<td>Vinblastine</td>
</tr>
<tr>
<td>Dacarbazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorambucil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOPP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABVD, Adriamycin, bleomycin, vinblastine and dacarbazine; BEP, bleomycin, etoposide and cisplatin; MOPP, nitrogen-mustard, oncovic (vincristine), procarbazine and prednison.

WHY TO PRESERVE? CHEMOTHERAPY

Testicular irradiation >2.5 Gy in adult men and > 6 Gy in pre-pubertal boys is associated with prolonged azoospermia

In patients with testicular cancer, sperm DNA fragmentation is significantly higher in patients who are treated with radiotherapy compared with that in patients treated with chemotherapy alone

Smit et al., Hum Reprod 2010; 25: 1877-83

Classes of Chemotherapy and Their Mechanisms of Action

<table>
<thead>
<tr>
<th>Class of agent</th>
<th>Name of drugs</th>
<th>Mechanism</th>
<th>Cell cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylating agents</td>
<td>Cyclophosphamide, nitrogen mustard, chloroethyl nitrosurea, busulfan, chlorambucil, melphalan, thiotepa</td>
<td>Cross-link DNA strand, interrupt RNA and protein synthesis</td>
<td>Non-specific</td>
</tr>
<tr>
<td>Cisplatin and analogues</td>
<td>Cisplatin, carboplatin</td>
<td>Interferes with DNA synthesis without affecting normal RNA and protein synthesis</td>
<td>Possibly specific (G2 arrest)</td>
</tr>
<tr>
<td>Vinca alkaloids (aneuploidy inducers)</td>
<td>Vincristine, vinblastine</td>
<td>Bind tubulin and cause dissociation of the microtubule apparatus</td>
<td>Specific: G1 and S phase</td>
</tr>
<tr>
<td>Antimetabolites</td>
<td>Methotrexate, aminopterin, 5-fluorouracil, cytarabine</td>
<td>Inhibit cellular metabolites by acting as false substrates for reactions required in DNA or RNA synthesis</td>
<td>Non-specific</td>
</tr>
<tr>
<td>Topoisomerase interactive agents</td>
<td>Bleomycin, actinomycin, doxorubicin, daunorubicin</td>
<td>Interact with enzyme-DNA complex. Prevents resealing of the top I-mediated DNA single strand breaks</td>
<td>Specific: G2 arrest/ S-phase apoptosis</td>
</tr>
</tbody>
</table>
MOLECULAR KARYOTYPING OF HUMAN SINGLE SPERM BY ARRAY-COMPARATIVE GENOMIC HYBRIDIZATION

- Normozoospermic men, (n: 3)
 - 100 single sperm

- Severe oligozoospermic (<5 mil/mL) (n: 3)
 - 100 single sperm

- After chemotherapy (6 months after the end of treatments) (n: 3)
 - 100 single sperm

Altered karyotype (%)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normozoospermia</td>
<td>7.8%</td>
</tr>
<tr>
<td>Severe oligozoospermia</td>
<td>16.3%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>23.8%</td>
</tr>
</tbody>
</table>

Why to preserve?

Because of elevated aneuploidy frequencies prior to and up to 24 months from the start of chemotherapy, patients should receive genetic counselling about the potentially increased risk of an aneuploid conceptus from sperm cryopreserved prior to chemotherapy, and for conceptions up to 2 years after the initiation of treatment.
WHEN TO PRESERVE?

Before orchiectomy

Before performing RPLND and before any surgical treatment at urogenital level

Before any chemotherapy and/or after two years from the end of treatments

Before radiotherapy at genital level
HOW TO PRESERVE?

“Cryopreservation of semen before cancer treatment starts is currently the only established method able to preserve future male fertility”

Dohle GR, Int J Urol 2010;17(4):327-331

Review Article

Male infertility in cancer patients: Review of the literature

Gert R Dohle
Department of Urology, Erasmus MC, Rotterdam, the Netherlands
As part of education and informed consent before cancer therapy, medical oncologists should address the possibility of infertility with patients treated during their reproductive years (or with parents) and be prepared to discuss fertility preservation options and/or to refer all potential patients to appropriate reproductive specialists.

- 91% oncologists recognize the importance of discussing infertility risks
- Only 61% of them discuss fertility preservation routinely with patients
- Before treatments, just 10% oncologists refer patients to fertility specialists for sperm banking
CHILDHOOD FERTILITY PRESERVATION?

Surviving childhood and reproductive-age malignancy: effects on fertility and future parenthood

Jaime M Knopman, Esperanza B Papadopoulos, James A Grifo, M Elizabeth Fino, Nicole Noyes

Annually, more than 50,000 cancer diagnoses are made in the USA in patients under the age of 35 years. Despite this staggering statistic, medical advancements have substantially improved survival rates. Thus, for both male and female patients with cancer, quality-of-life issues, such as fertility preservation and parenthood, have become an essential component of treatment. Unfortunately, many of the treatments to eradicate malignant processes can also compromise reproductive function. In these cases, fertility preservation should be discussed and initiated with early treatment planning, to allow the best chance for future parenthood, when appropriate. The effects of cancer and cancer treatments on fertility and future parenthood, including health risks for patients, their gametes, and offspring are discussed.

..almost one-third of male childhood cancer survivors become azoospermic and one-fifth oligozoospermic after chemotherapy

HOW TO PRESERVE?
Testicular tissue harvesting

Stored germ cells could be re-implanted into the patient’s own testes

- GERM CELL TRANSPLANTATION –

Transplantation into a host to complete spermatogenesis

- SPERMATOGENESIS EX-SITU -

Stored stem cells could be maturated in vitro

- IN VITRO SPERMATOGENESIS –

Spermatogenesis from stem cells
BIOLOGICAL PROBLEMS

TECHNICAL DIFFICULTIES

GENETIC and ETHICAL CONCERNS

Modified by Brinster RL, Science 2007;316(5823):404-405
ENDOCRINE FOLLOW-UP

Why to perform the endocrine follow-up?

- Among TC survivors, 18% shows uncompensated and 37% compensated Leydig cell dysfunction

- Testicular cancer patients with signs of hypogonadism have significantly increased risk of metabolic syndrome, investigation of endocrine and metabolic parameters is warranted in these patients.

- Impairment of testicular function leads to low levels of testosterone, INSL3 and 25-hydroxyvitamin D and consequently to an increased risk of osteopenia and osteoporosis
In the adult, hormones INSL3 and 25-OH vitamin D represents markers of Leydig cell function more sensitive than testosterone plasma levels.
ENDOCRINE FOLLOW-UP

What to check during the endocrine follow-up?

- Every year:
 - Semen analysis
 - Testicular ultrasound
 - Total testosterone, LH, Estradiol, fT4, TSH
 - 25-OH vitamin D, PTH, Calcium/Phospate homeostasis
 - Glucose metabolism
 - Lipid metabolism

- Every three years:
 - Bone densitometry (DEXA)
THANK YOU!