Thyroid Cancers: Update

Jaume Capdevila, MD, PhD

GI and Endocrine Tumor Unit
Vall d’Hebron University Hospital
Vall Hebron Institute of Oncology (VHIO)
Thyroid Cancer: Cell Type and Histology

- Follicular cells (90-95%)
- Papillary
- Follicular
- Hürthle cell
- Medullary thyroid carcinoma (MTC)
- Parafollicular cells (3-5%)
Pembrolizumab for Advanced Papillary or Follicular Thyroid Cancer: Preliminary Results From the Phase 1b KEYNOTE-028 Study

Primary endpoint: Overall objective response rate

Main secondary endpoints:
- Duration of response
- Relationship between PFS and tumor PD-L1 expression and GEP score
- Safety
- Progression free survival
- Overall survival

PD-L1 ≥1% + PTC & FTC
73% pretreated
41% ≥ 2 prior lines

Mehnert ASCO 2016
Pembrolizumab in Thyroid Cancer

- 51 screenings for PD-L1 expression (22C3 moAb Merck)
- 36 (71%) positive ≥1% in tumor and/or stromal cells
- 22 received pembrolizumab

mPFS: 6.8 months

Mehnert ASCO 2016
Combination Targeted Therapy with Pembrolizumab and Lenvatinib in Progressive, Radioiodine-resistant Differentiated Thyroid Cancers

Previous VEGFR active multikinase inhibitor (except lenvatinib) – will stratify between both arms of primary study

Patients who have been previously treated with non-VEGFR active kinase inhibitors other than lenvatinib (examples – dabrafenib, vemurafenib, selumetinib) will be eligible for substudy 1.

Patients who have been previously treated with lenvatinib and have RECIST progression will be eligible for substudy 2.

Primary Outcome:

Substudy #1: Complete Response (CR) as determined by RECIST 1.1 criteria.

Substudy #2: Objective Response Rate (CR+PR) as determined by RECIST 1.1 criteria.
NTRK fusions in Thyroid Cancer

First reported clinical response in Trk-fusion patients11

- \textit{NTRK1} fusions in cholangiocarcinoma12
- \textit{NTRK1} fusions in Spitz tumors13
- \textit{ETV6-NTRK3} in radiation-associated thyroid cancer14
- \textit{NTRK1,2,3} fusions in pediatric gliomas15
- \textit{NTRK2} fusions in NSCLC16
- \textit{NTRK3} fusions in CRC and H\&N16
- \textit{NTRK1} fusions in sarcoma16

- \textit{ETV6-NTRK3} in congenital fibrosarcoma3 & nephroma4
- \textit{ETV6-NTRK3} in secretory breast cancer6

- \textit{ETV6-NTRK3} in MASC7

- \textit{NTRK1} fusions in PTC2

- \textit{NTRK1} fusions in pediatric PTC21
- \textit{NTRK3} fusions in Spitz tumors22
- \textit{NTRK1} fusions in lipofibromatosis-like neural tumors23

- \textit{LMNA-NTRK1} in congenital infantile fibrosarcoma24

- \textit{LMNA-NTRK1} in CRC17
- \textit{LMNA-NTRK1} in soft tissue sarcoma18
- \textit{SQSTM1-NTRK1} in NSCLC19
- \textit{NTRK3} fusions in inflammatory myofibroblastic tumor20

- \textit{NTRK1} fusions in NSCLC8
- \textit{NTRK2} fusions in astrocytoma9
- \textit{NTRK1} fusions in GBM10

\textit{NTRK1-NTRK3} in cholangiocarcinoma12
NTRK fusions in Thyroid Cancer

Lassen U, et al. ESMO 2018

- ORR (95% CI): 81% (72–88%)
- Best response:
 - PR: 63%
 - CR: 17%

Maximum change in tumor size (%)

- Infantile fibrosarcoma
- Soft tissue sarcoma
- Melanoma
- Colon
- Appendix
- Lung
- Gastrointestinal stromal tumor
- Congenital mesoblastic nephroma
- Pancreas
- Bone sarcoma
- Thyroid
- Salivary gland

* Integrated† (n=109)

#
Thyroid Cancer:
Cell Type and Histology

- Follicular cells
 - Anaplastic
 - Papillary
 - Follicular
 - Hürthle cell

- Parafollicular cells (3-5%)

- Medullary thyroid carcinoma (MTC)

Do not duplicate or distribute without permission from author and ESO.
SELECTIVE RET INHIBITION

Table 1: Biochemical potency of RET inhibitors and MKIs against RET mutants and VEGFR2

<table>
<thead>
<tr>
<th>Compound</th>
<th>WT RET</th>
<th>RET V804M</th>
<th>RET M918T</th>
<th>VEGFR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOXO-292</td>
<td>0.4</td>
<td>0.8</td>
<td>0.7</td>
<td>100</td>
</tr>
<tr>
<td>BLU-667</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>35</td>
</tr>
<tr>
<td>RXDX-105</td>
<td>3</td>
<td>102</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Cabozantinib</td>
<td>11</td>
<td>162</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>4</td>
<td>726</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Seoane J & Capdevila J. *Ann Oncol* 2018
RESEARCH ARTICLE

Precision Targeted Therapy with BLU-667 for RET-Driven Cancers

Vivek Subbiah¹, Justin F. Gainor², Rami Rahal³, Jason D. Bruhaker², Joseph L. Kim³, Michelle Maynard³, Wei Hu³, Qingfang Cao³, Michael P. Sheets³, Douglas Wiltanski¹, Kevin J. Wilson³, Lucian DiPietro³

ORIGINAL ARTICLE

Selective RET kinase inhibition for patients with RET-altered cancers

V. Subbiah¹†, V. Velcherti²†, B. B. Tuch³, K. Ebata³, N. L. Busaidy¹, M. E. Cabanillas¹, L. J. Wirth⁴, S. Stock², S. Smith³, V. Lauriall³, S. Corsi-Travali³, D. Henry³, M. Burkard⁵, R. Hamor⁵, K. Bouhaha⁵, S. Winski⁵, R. D. Wallace⁵, D. Hartley⁵, S. Rhodes⁵, M. Reddy⁵, B. J. Brandhuber³, S. Andrews³, S. M. Rothenberg³* & A. Drilon⁶*
Clinical activity of LOXO-292 in *RET*-altered cancers

<table>
<thead>
<tr>
<th></th>
<th>RET fusion-positive cancers</th>
<th>RET-mutant MTC</th>
<th>No known activating RET alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>NSCLC</td>
<td>Other<sup>1</sup></td>
</tr>
<tr>
<td>Enrolled</td>
<td>49</td>
<td>38</td>
<td>11</td>
</tr>
<tr>
<td>Eligible for response evaluation<sup>2</sup></td>
<td>39</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)<sup>3</sup></td>
<td>77%</td>
<td>77%</td>
<td>76%</td>
</tr>
<tr>
<td>Confirmed Overall Response Rate<sup>3,4</sup></td>
<td>74%</td>
<td>74%</td>
<td>71%</td>
</tr>
<tr>
<td>CR</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>uCR<sup>5</sup></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PR</td>
<td>25</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>uPR<sup>5</sup></td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SD</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>PD</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Not evaluable<sup>6</sup></td>
<td>3</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

1. Patients eligible for response evaluation include thyroid cancer (n=7), pancreatic cancer (n=2). 2. Excludes patients recently enrolled that remain on treatment, but have not had a first post-baseline response assessment. 3. Response status per RECIST 1.1. Overall response rate = CR+uCR+PR+uPR. Overall response rate. Confirmed overall response rate: all RET fusion-positive (30/39, 76.9%), RET fusion-positive, NSCLC (23/30, 76.7%), RET fusion-positive other (7/9, 77.8%), RET-mutant MTC (10/22, 45.5%). 4. Excludes patients with unconfirmed CR/PR pending confirmation at time of data cut-off. 5. Unconfirmed responses in patients that remain on treatment awaiting a confirmatory response assessment. 6. Patients that discontinued treatment prior to a first post-baseline response assessment.

NSCLC = non-small-cell lung cancer; MTC = medullary thyroid cancer; CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease

April 2, 2018 data cut-off date

Presented By Alexander Drilon at 2018 ASCO Annual Meeting
Efficacy of LOXO-292 in RET-mutant medullary thyroid cancer

Note: Two patients not displayed (one due to treatment discontinuation prior to first post-baseline response assessment; one due to non-measurable disease at baseline (uOR)). T includes cabozantinib, lenvatinib, pazopanib, RXDX-105, sorafenib, sunitinib, and vandetanib; * CR, April 2, 2018 data cut-off date.
Efficacy of LOXO-292 regardless of mutation and starting dose

RET mutation
- M918T
- A883F
- E632_L633 del
- C618Y
- D631_L633 del
- D378_G385>E

Maximum change in tumor size (%)

Starting dose
- 80 mg BD
- 60 mg QD
- 60 mg BD
- 40 mg BD
- 40 mg BD
- 20 mg BD
- 20 mg BD
- 20 mg BD
- 160 mg BD

BID = twice-daily, QD = once-daily

Note: Two patients not displayed (one due to LOXO-292 discontinuation prior to first post-baseline response assessment, one due to non-measurable disease at baseline [uCR]), *CR*

April 2, 2018 data cut-off date
LOXO-292 safety profile

<table>
<thead>
<tr>
<th>Treatment-emergent AEs (≥10% overall)</th>
<th>Treatment-related AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>12%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10%</td>
</tr>
<tr>
<td>Constipation</td>
<td>13%</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>12%</td>
</tr>
<tr>
<td>Nausea</td>
<td>9%</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>7%</td>
</tr>
</tbody>
</table>

- Most treatment-emergent AEs were Grade 1 in severity
- Two treatment-related AEs ≥grade 3: grade 3 tumor lysis syndrome (DLT), grade 3 increased ALT
- MTD not reached

AE = adverse event, DLT = dose limiting toxicity, ALT = alanine aminotransferase, MTD = maximum tolerated dose. Note: Total %s for any given AE may be different than the sum of the individual grades, due to rounding.
Thyroid Cancer: Cell Type and Histology

- Follicular cells (90-95%)
- Anaplastic
- Parafollicular cells (3-5%)
- Medullary thyroid carcinoma (MTC)
 - Parafollicular cells
 - Follicular cells
- Differentiated
 - Papillary
 - Follicular
- Hürthle cell
Is there Room for Precision Medicine in ATC?

Efficacy of Dabrafenib and Trametinib in pts with BRAF V600E mutated ATC

METHODS

Figure 1. ROAR Trial Design

BRAF V600 mutation positive
- Local assessment*

Dosing
- Oral dabrafenib 150 mg twice daily plus trametinib 2 mg once daily

Primary endpoint
- Overall response rate†

Secondary endpoints
- Duration of response
- Progression-free survival
- Overall survival
- Safety

Expansion Cohorts for Efficacious Histologies

- Disease assessment every 8 weeks (solid tumors, leukemia) or every 4 weeks (hairy cell leukemia)‡
- Treatment until unacceptable toxicity, disease progression, or death

Anaplastic thyroid cancer
- Biliary tract cancer
- Gastrointestinal stromal tumor
- WHO grade 1 or 2 glioma
- WHO grade 3 or 4 glioma
- Nonseminomatous/nongerminomatous germ cell tumors
- Adenocarcinoma of the small intestine
- Hairy cell leukemia
- Multiple myeloma

*Patients could be enrolled based on local *BRAF* V600E mutation results with mutation status confirmed by a central reference laboratory.

†Response determination was based on Response Evaluation Criteria In Solid Tumors v1.1 for the solid tumor cohorts, RANO or modified RANO criteria for the grades I-IV glioma cohorts, International Myeloma Working Group criteria for the multiple myeloma cohort, and protocol-specified consensus criteria for the hairy cell leukemia cohort.

Subbiah V, et al. J Clin Oncol 2018
RESULTS

Figure 2. Maximum percent change from baseline in the sum of target lesion diameters in the anaplastic thyroid cancer intent-to-treat population.

Data presented are best investigator-assessed response according to RECIST v1.1 for individual patients in the anaplastic thyroid cancer intent-to-treat population. One patient had progression of disease in the brain at week 1 and thus a percent change could not be calculated.

* An anaplastic thyroid cancer *BRAF V600E* mutation identified locally was not centrally confirmed in this patient.

RR: 70%
RESULTS
Figure 4. Treatment duration and time to events.

Overall Survival estimation at 12 months: 80%

Dabrafenib-Trametinib approved by FDA in May/2018 for ATC

Data presented are best investigator-assessed response according to RECIST v1.1 for individual patients in the anaplastic thyroid cancer intent-to-treat population.

Subbiah V, et al. J Clin Oncol 2018
Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer

Remarkable Response to Crizotinib ALK–Rearranged Anaplastic Thyroid Carcinoma

Do not duplicate or distribute without permission from author and ESO
Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with anaplastic thyroid cancer

Lori Wirth¹, Ekkehard Eigendorff², Jaume Capdevila³, Luis Paz-Ares⁴, Chia-Chi Lin⁵, Matthew Taylor⁶, Rodryg Ramlau⁷, Marcus Butler⁸, Jean-Pierre Delord⁹, Zsolt Horvath¹⁰, Hans Gelderblom¹¹, Paolo A. Ascierto¹², Angelica Fasolo¹³, Dagmar Führer¹⁴, Hongqian Wu¹⁵, Geraldine Bostel¹⁶, Scott Cameron¹⁷, Jason Faris¹⁷, Andreea Varga¹⁸

¹Massachusetts General Hospital, Boston, MA; ²University Hospital Jena, Jena, Germany; ³Vall d’Hebron University Hospital, Barcelona, Spain; ⁴University Hospital 12 de October, Madrid, Spain; ⁵National Taiwan University Hospital, Taipei, Taiwan; ⁶Oregon Health & Science University, Portland, OR; ⁷University of Medical Sciences, Poznan, Poland; ⁸University Health Network, Toronto, Canada; ⁹IUCT Oncopole, Toulouse, France; ¹⁰University of Debrecen, Faculty of Medicine, Institute of Oncology, Debrecen, Hungary; ¹¹Leiden University Medical Center, Leiden, Netherlands; ¹²National Tumour Institute Fondazione G. Pascale, Naples, Italy; ¹³San Raffaele Hospital, Milan, Italy; ¹⁴University Hospital Essen, Essen, Germany; ¹⁵Novartis Pharmaceuticals Corporation, East Hanover, NJ; ¹⁶Novartis Institutes for BioMedical Research, Basel, Switzerland; ¹⁷Novartis Institutes for BioMedical Research, Cambridge, MA; ¹⁸Gustave Roussy Cancer Campus, Paris, France
Results

Figure 5. Percentage change from baseline in sum of longest diameters of target lesions (confirmed, RECIST v1.1)

ORR: 12%
DCR: 26%

PD, progressive disease; PR, partial response; SD, stable disease; UNK, unknown.
N=28 evaluable; 14 patients were not evaluable due to post-baseline assessment not yet performed, discontinuation prior to first post-baseline assessment, or missing tumor measurements.

Do not duplicate or distribute without permission from author and ESO
PDR001 (anti-PD-1)

Nov 2016

Jan 2017

Do not duplicate or distribute without permission from author and ESO.
Take Home Messages

➢ Both RAI-R DTC and MTC have two approved MKIs based on phase III data: sorafenib-lenvatinib & vandetanib-cabozantinib

➢ Stronger drug development based on specific molecular aberrations and drug combinations (including immunotherapy) are warranted