Systemic therapy for non-oncogene addicted NSCLC

Dr Ross Soo, MB BS, PhD, FRACP
Department Haematology-Oncology, National University Hospital
National University Cancer Institute, Singapore
National University Health System

ESMO Preceptorship Programme, Non-small cell lung cancer, Singapore, 21-22 November 2018
Disclosures

• **Advisory Board:** Astra-Zeneca, BMS, Boehringer Ingelheim, Celgene, Ignyta, Lilly, Merck, Novartis, Pfizer, Roche, Taiho, Yuhan

• **Research grant:** Astra-Zeneca
1st line chemotherapy and contribution of targeted agents in non-driver addicted NSCLC

- Historical management
- 1st line management of non-squamous NSCLC
 - The treatment strategy should consider the histology, molecular pathology, age, PS, comorbidities and the patient’s preferences
 - Systemic therapy should be offered to all stage IV patients with PS 0–2
- 1st line management of squamous NSCLC

Clinical practice guidelines

Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
In the beginning...role of 1st line chemotherapy

ESMO guidelines:
Chemotherapy with platinum doublets should be considered in all stage IV NSCLC patients without an actionable oncogenic driver, without major comorbidities and PS 0–2.
Platinum-based doublets are the recommended chemotherapy option in all stage IV NSCLC patients with no contraindications to platinum compounds.

NSCLC Meta-Analyses Collaborative Group. JCO 2008
Platinum doublet with 3rd generation drugs

ECOG1594

TAX 326

FACS:
IP, TC, GP, NP

nab-Paclitaxel and Carboplatin in Advanced NSCLC

ESMO Guidelines:
Nab-paclitaxel combination can be considered an option in advanced NSCLC patients, particularly in patients with:
- greater risk of neurotoxicity
- preexisting hypersensitivity to paclitaxel
- or contraindications to standard paclitaxel premedication

Socinski JCO 2012
1L treatment of advanced non-Squamous NSCLC without driver oncogenes (NSCC)

• Pemetrexed-based chemotherapy is preferred to gemcitabine- or docetaxel-based combinations in patients with non-squamous tumours
• Pemetrexed is restricted to NSCC in any line of treatment line
• Carboplatin and pemetrexed can be an option in patients with a contraindication to cisplatin
Impact of histology as a biomarker on treatment selection: efficacy

JMDB: Phase III cisplatin/gemcitabine vs cisplatin/ pemetrexed

Pemetrexed platinum and gemcitabine platinum have differential efficacy based on histology: JMDB

Intention to treat (all histologies): no difference between CP and GC

Scagliotti J Clin Oncol 2008
Addition of bevacizumab to chemotherapy: ECOG 4599

Stage 4, NSCLC
Treatment naive
ECOG PS=0-1
N=878

Paclitaxel + carboplatin + bevacizumab x6 cycles q3w

Paclitaxel + carboplatin q3w x6 cycles

Bevacizumab until PD, intolerable toxicity

OS
Safety

Sandler NEJM 2006
ECOG4599: addition bevacizumab to carboplatin/paclitaxel improves OS

HR (95% CI) = 0.79 (0.67, 0.92), p=0.003
OS= 12.3 vs 10.3 months

PFS: 6.2m vs 4.5m
ORR: 35% vs 15%

Sandler NEJM 2006
Other issues with bevacizumab

• Can I give it in the elderly?
• Is CNS mets a contraindication?
The survival benefit for bevacizumab added to chemotherapy seems limited to patients aged less than 75 years.

<table>
<thead>
<tr>
<th>Study</th>
<th>Age cutoff</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laskin</td>
<td>65 years</td>
<td>OS benefit</td>
</tr>
<tr>
<td>Leighl</td>
<td>65 years</td>
<td>OS benefit</td>
</tr>
<tr>
<td>Zhu</td>
<td>65 years</td>
<td>No OS benefit</td>
</tr>
<tr>
<td>Ramalingam</td>
<td>70 years</td>
<td>No OS benefit, more AEs</td>
</tr>
<tr>
<td>Langer</td>
<td>75 years</td>
<td>No OS benefit, more AEs</td>
</tr>
</tbody>
</table>

CNS mets

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besse</td>
<td>retrospective exploratory analysis</td>
<td>CNS metastases: risk of CNS bleed independent of bevacizumab</td>
</tr>
<tr>
<td>Socinski</td>
<td>PASSPORT Phase II, prior treated CNS mets</td>
<td>No grade ≥2 cerebral hemorrhage was observed</td>
</tr>
<tr>
<td>Lynch</td>
<td>SEER 65 years</td>
<td>Similar to other studies</td>
</tr>
<tr>
<td>Zhu</td>
<td>SEER 65 years</td>
<td>No OS benefit</td>
</tr>
</tbody>
</table>

EMA removed label restriction on March 25, 2009, to allow patients with untreated CNS metastases to receive bevacizumab

Meta-analysis of 1st Bevacizumab+ chemotherapy

ESMO Guidelines:
The combination of bevacizumab and other platinum-based chemotherapies may be offered in the absence of contraindications in eligible patients with advanced NSCC

significant improvement in OS and PFS for the combination of bevacizumab and platinum-based chemotherapy

Soria Ann Oncol 2013
1st line chemotherapy + VEGF receptor TKIs...too high a mountain?

- Sorafenib (ESCAPE, NExUS)
- Motesanib (MONET 1)
- Cediranib (BR29)
- AMG-706
- Axitinib
- ABT-869
How about using 1st line EGFR TKIs in unselected patients?

In unselected patients, 1st line erlotinib followed by chemotherapy is inferior to 1st line chemotherapy followed by erlotinib.
Maintenance therapy: the uninterrupted continuation of therapy for patients who have not progressed after 1L chemotherapy

• Factors to be considered:
 • Histology
 • Residual toxicity after 1L chemotherapy
 • Response to platinum doublet
 • Performance status
 • Patient preference
Continuation maintenance therapy: pemetrexed after x4 cycles cisplatin/ pemetrexed (PARAMOUNT)

ESMO guidelines:
Pemetrexed continuation maintenance should be considered in patients having disease control following four cycles of cisplatin/pemetrexed
Switch maintenance therapy: pemetrexed after x4 cycles platinum based chemotherapy (JMEN).

OS and PFS more pronounced in non-squamous subset

Ciuleanu Lancet 2009
Switch maintenance

ESMO guidelines:
NSCC and PS 0–1, pemetrexed switch maintenance should be considered in patients with disease control after x4 non-pemetrexed containing platinum-based chemotherapy

Continuation maintenance with gemcitabine is an option in NSCLC patients treated with x4 cycles of cisplatin/gemcitabine

Fidias JCO 2009, Cappuzzo Lancet Oncol 2010, Perol JCO 2012
How about maintenance EGFR TKIs in unselected patients?

<table>
<thead>
<tr>
<th>Study</th>
<th>Induction</th>
<th>Maintenance</th>
<th>PFS (HR, p value)</th>
<th>OS (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATURN</td>
<td>Platinum doublet x4</td>
<td>Erlotinib Placebo</td>
<td>12.3w (0.71, p<0.001)</td>
<td>12.0m (0.81, p=0.0088)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.1w</td>
<td>11m</td>
</tr>
<tr>
<td>WJTOG</td>
<td>Platinum doublet x3</td>
<td>Gefitinib Observation</td>
<td>4.6m (0.68 p<0.001)</td>
<td>13.7m (p=ns)</td>
</tr>
<tr>
<td></td>
<td>Platinum doublet x6</td>
<td></td>
<td>4.3m</td>
<td>12.9m</td>
</tr>
<tr>
<td>INFORM</td>
<td>Platinum doublet x4</td>
<td>Gefitinib Placebo</td>
<td>4.8m (0.69, p=0.003)</td>
<td>18.7m (p=ns)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.6m</td>
<td>16.9m</td>
</tr>
</tbody>
</table>

IUNO: 1L maintenance vs 2L erlotinib in NSCLC without \textit{EGFR} mutations.

ESMO guidelines:
Maintenance treatment with erlotinib is only recommended for NSCC patients with an EGFR-sensitising mutation

Cicenas Lung Cancer 2016
1L treatment of advanced Squamous NSCLC

- Platinum-based doublets with a third-generation cytotoxic agent (gemcitabine, vinorelbine, taxanes) are recommended in advanced SCC patients without major comorbidities and PS 0–2
Phase III 1st line Gem/ CDDP +/- necitumumab in SCC (SQUIRE)

ESMO guidelines:
the addition of necitumumab to cisplatin
and gemcitabine has not been adopted as a standard...and
its use should be carefully evaluated

Thatcher Lancet Oncol 2015
Docetaxel standard 2nd line therapy until recently

- 2nd line combination chemo has no OS benefit over single-agent.
- Docetaxel:
 - Improvement in OS vs BSC
 - Similar efficacy, but more favourable tolerability for weekly docetaxel schedule
- Pemetrexed:
 - Comparable OS to docetaxel
 - Lower rates of neutropenia, alopecia and GI toxicity
- Docetaxel + antiangiogenic therapy
 - LUME Lung 1
 - REVEL
 - ULTIMATE
- Immune checkpoint inhibitors

Shepherd JCO 2000, Hanna JCO 2004
2nd line therapy: docetaxel +/- nintedanib (LUME LUNG 1) \(n=1314 \)

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Nintedanib + docetaxel</th>
<th>Placebo + docetaxel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, mo</td>
<td>12.6</td>
<td>10.3</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.83 (0.70–0.99)</td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td>0.0359</td>
<td></td>
</tr>
</tbody>
</table>

Reck Lancet Oncol 2014
2nd line therapy: docetaxel +/- nintedanib (LUME LUNG 1) (ADC, n=658)

ESMO guidelines:
Docetaxel + nintedanib is a treatment option for patients with adenocarcinoma progressing after previous chemotherapy or immunotherapy

Reck Lancet Oncol 2014
2nd line therapy: docetaxel + ramucirumab (REVEL) (n=1253)

ESMO guidelines:
Docetaxel + ramucirumab is treatment option for patients with NSCLC progressing after previous chemotherapy or immunotherapy, with PS 0–2
2nd line therapy: weekly paclitaxel + bevacizumab vs docetaxel (ULTIMATE)

<table>
<thead>
<tr>
<th></th>
<th>docetaxel</th>
<th>wPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR</td>
<td>5.5%</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

Improved PFS

HR = 0.62 [0.44-0.87]
$p = 0.006$

No OS benefit

HR = 1.18 [0.81-1.72]
$p = 0.40$

Cortot WCLC 2016
Is 2nd line EGFR TKIs effective in WT \textit{EGFR} NSCLC?

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Treatment</th>
<th>Primary endpoint</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEREST</td>
<td>EGFR unselected</td>
<td>Gefitinib v Docetaxel</td>
<td>OS non inferiority of gefitinib</td>
<td>Gefitinib non inferior to docetaxel</td>
</tr>
<tr>
<td>TITAN</td>
<td>EGFR unselected</td>
<td>Erlotinib v Docetaxel or pemetrexed</td>
<td>OS</td>
<td>No statistical difference</td>
</tr>
<tr>
<td>KCSG-LU08-01</td>
<td>Never smoker, ADC</td>
<td>Gefitinib v Pemetrexed</td>
<td>PFS</td>
<td>Gefitinib better (P = .0006)</td>
</tr>
<tr>
<td>TAILOR</td>
<td>WT EGFR</td>
<td>Erlotinib v Docetaxel</td>
<td>OS</td>
<td>Docetaxel better (p=0.05)</td>
</tr>
<tr>
<td>HORG</td>
<td>EGFR unselected</td>
<td>Pemetrexed v erlotinib</td>
<td>TTP</td>
<td>No statistical difference</td>
</tr>
<tr>
<td>DELTA</td>
<td>EGFR unselected</td>
<td>Erlotinib v Docetaxel</td>
<td>PFS</td>
<td>No statistical difference</td>
</tr>
<tr>
<td>CTONG-0806</td>
<td>WT EGFR</td>
<td>Pemetrexed v gefitinib</td>
<td>PFS</td>
<td>Pemetrexed better (p < 0.001)</td>
</tr>
</tbody>
</table>

When there’s controversy, let’s do a meta-analysis...

ESMO Guidelines

Erlotinib represents a potential second/third-line treatment option in particular for patients not suitable for immunotherapy or 2L chemotherapy in unknown EGFR status or EGFR WT NSCLC.
2L SCC: afatinib vs erlotinib (LUX Lung 8)

<table>
<thead>
<tr>
<th></th>
<th>Afatinib (n=398)</th>
<th>Erlotinib (n=397)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients died</td>
<td>307 (77.1%)</td>
<td>325 (81.9%)</td>
</tr>
<tr>
<td>Median OS, months</td>
<td>7.92 (7.19, 8.74)</td>
<td>6.77 (5.85, 7.79)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR, p-value</td>
<td>0.808 (0.691, 0.946)</td>
<td>0.0077</td>
</tr>
</tbody>
</table>

ESMO Guidelines
In patients with advanced SCC with PS 0–2 unfit for chemotherapy or immunotherapy, afatinib is a potential option with unknown EGFR status or EGFR WT patients.
Conclusions

- Non-squamous NSCLC:
 - Doublet chemotherapy ± bevacizumab
 - Carboplatin based doublet, monotherapy
 - Maintenance erlotinib not recommended for WT EGFR

- Squamous NSCLC
 - Platinum-based doublets with a third-generation cytotoxic agent (gemcitabine, vinorelbine, taxanes) for PS 0-2

- Developing novel therapeutic agents (immune checkpoint inhibitors)
- Identifying biomarkers in oncogene WT NSCLC