Improving the Outcome of Patients with Metastatic Pancreatic Cancer

Philip Agop Philip, MD, PhD, FRCP
Professor of Oncology and Pharmacology
Karmanos Cancer Center
Wayne State University
Detroit, MI
Median overall survival following standard frontline therapies in metastatic disease: 1997 -

- Gemcitabine
- Gemcitabine erlotinib
- Gemcitabine nabpaclitaxel
- FOLFIRINOX

How to improve on current gains with induction chemotherapy?

• Increasing cytotoxic power (and toxicity!) in the frontline and beyond
• Rational sequencing of tolerable therapies
• Maintenance after shorter induction therapy
• Ablative/surgical strategies to treat residual disease
PRODIGE 35: PANOPTIMUX study allows interruption of FOLFRINOX after 8 cycles without loss in survival

<table>
<thead>
<tr>
<th></th>
<th>Arm A</th>
<th>Arm B</th>
<th>Arm C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS in mo</td>
<td>10.1</td>
<td>11.0</td>
<td>7.3</td>
</tr>
<tr>
<td>6 mo (%)</td>
<td>73.6</td>
<td>75.0</td>
<td>60.0</td>
</tr>
<tr>
<td>12 mo (%)</td>
<td>43.3</td>
<td>28.0</td>
<td>13.9</td>
</tr>
<tr>
<td>18 mo (%)</td>
<td>18.5</td>
<td>28.0</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Dahan L, et al, ASCO 2018
Drugs and targets that failed in clinical trials involving pancreatic adenocarcinoma: December 2015 – May 2018

<table>
<thead>
<tr>
<th>Drug</th>
<th>Target/Mechanism</th>
<th>Phase</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evofosfamide</td>
<td>Alkylator (Hypoxia)</td>
<td>3</td>
<td>694</td>
</tr>
<tr>
<td>Ruxolotinib</td>
<td>JAK1/2</td>
<td>3</td>
<td>Early termination</td>
</tr>
<tr>
<td>Necuparanib</td>
<td>Heparan mimetic</td>
<td>1/2</td>
<td>128</td>
</tr>
<tr>
<td>Masatinib</td>
<td>TKI (Kit, Lyn, Fyn)</td>
<td>3</td>
<td>353</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>TKI (VEGFR2, RET, EGFR)</td>
<td>2</td>
<td>142</td>
</tr>
<tr>
<td>Algenpantucel-L</td>
<td>Vaccine</td>
<td>3</td>
<td>722</td>
</tr>
<tr>
<td>CRS-207 + GVAX</td>
<td>Vaccine</td>
<td>2b</td>
<td>240</td>
</tr>
<tr>
<td>Tarextumab</td>
<td>Notch2/3</td>
<td>2</td>
<td>177</td>
</tr>
<tr>
<td>Demcizumab</td>
<td>DLL4</td>
<td>2</td>
<td>204</td>
</tr>
<tr>
<td>90Y-Clivatuzumab Tetraxetan</td>
<td>MUC1</td>
<td>3</td>
<td>334</td>
</tr>
<tr>
<td>Apatorsen</td>
<td>HSP27</td>
<td>2</td>
<td>132</td>
</tr>
<tr>
<td>Simutuzumab</td>
<td>LOX-2</td>
<td>2</td>
<td>240 (159)</td>
</tr>
</tbody>
</table>
A shifting paradigm in developing new therapies for pancreatic adenocarcinoma

Targeting isolated gene product and/or pathway

- No driver genes
- Complex biology
- No good correlation with clinical outcome

Modifying unique aspects of pancreas cancer biology

- Better correlation with clinical outcome
- Opportunities for rational drug combinations
- Benefiting from evolving molecular classifiers
Integrated genomic characterization of pancreatic cancer (TCGA)

Raphael et al, Cancer Cell, 32:185-203, 2017
Exploiting DNA repair defects in pancreatic cancer

PARP inhibitors and platinums in \textit{BRCA} mutated tumors: emerging prospective data

The pilot study
O’Reilly et al, Cancer 2018

The current RP2 study
N = 50, Primary EP = RR
POLO: Phase 3 international PARPi maintenance study in *gBRCA* mutated patients

Metastatic pancreas ca
Prior platinum therapy
Germline *BRCA* mut
ECOG 0-1

Primary EP = PFS
N = 145

Olaparib
300 mg po BID

Placebo
300 mg po BID

NCT02184195
Modulating the unique microenvironment of pancreatic adenocarcinoma

- Promotes/sustains cancer progression and drug resistance
- Very desmoplastic
 - Limits drug delivery
- An “Immune desert”

J Natl Cancer Inst. 2010;102(7):448-450;
Select stromal targeting

- Hedgehog inhibitors
- Recombinant human hyaluronidase: PEGylated-rHuPH20 (PEGPH20)
- CD40 agonists
- Vitamin D analogues
- Focal adhesion kinase (FAK) inhibitors

Olive, Science 2009; 324:1457-61
Provenzano, Cancer Cell 2012; 21:418-29
Beatty, Science 2011; 331:1612-6
Sherman, Cell 2014;159:80-93
Alvarez, Br J Cancer 2013, 109:926-33
Hyaluronan (HA) targeting with pegylated recombinant human hyaluronidase (PEGPH20)

- Study 202: PEGPH20 improved PFS with manageable thrombotic events
- Hyaluronan (HA) IHC as a companion diagnostic and predictive biomarker

Hingorani et al, JCO 2018

<table>
<thead>
<tr>
<th>HALO-301</th>
<th>Phase</th>
<th>Sites</th>
<th>HA</th>
<th>N</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gem/nab-paclitaxel +/- PEGPH20 NCT02715804</td>
<td>III</td>
<td>Global</td>
<td>High only</td>
<td>420</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>
A Phase IB/II Randomized Study of mFOLFIRINOX (mFFX) + PEGPH20 versus mFFX in Patients with Metastatic Pancreatic Adenocarcinoma unselected for HA expression: SWOG- S1313

Progression-Free Survival
Data as of December 5, 2017

<table>
<thead>
<tr>
<th></th>
<th>mFOLFIRINOX</th>
<th>PEGPH20 + mFOLFIRINOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk</td>
<td>56</td>
<td>55</td>
</tr>
<tr>
<td>Failed</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>Median in Months</td>
<td>6.2</td>
<td>4.3</td>
</tr>
</tbody>
</table>

HR 0.61
95% CI: 0.40-0.93, P=0.02

Overall Survival
Data as of December 5, 2017

<table>
<thead>
<tr>
<th></th>
<th>mFOLFIRINOX</th>
<th>PEGPH20 + mFOLFIRINOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk</td>
<td>56</td>
<td>55</td>
</tr>
<tr>
<td>Deaths</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>Median in Months</td>
<td>14.4</td>
<td>7.7</td>
</tr>
</tbody>
</table>

HR 0.50
95% CI: 0.31-0.81, P<0.01

<table>
<thead>
<tr>
<th></th>
<th>PEGPH20 + mFFX</th>
<th>mFFX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median # of cycles</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Response (%)</td>
<td>29</td>
<td>45</td>
</tr>
</tbody>
</table>

Ramanathan et al, ASCO GI, 2018
Targeting metabolism in pancreatic cancer

The Warburg effect

Interaction of metabolism with signaling pathways

CPI-613: selectively blocks PDH and KGDH triggering cell death that is highly selective to tumor cells

Pilot clinical trial

CPI-613 + lower dose FOLFIRINOX

Oxaliplatin 65 mg/m²
Irinotecan 140 mg/m²
5FU 2,400 mg/m²

Alistar et al, Lancet Oncology, Vol 18, June 2017
Phase III trial: CPI-613 plus mFOLFIRINOX to be launched Q3/2018

Previously untreated metastatic pancreatic cancer
EECOG 0/1

N = 500
Primary EP = RR/PFS

CPI-613 500 mg/m²
Oxaliplatin 65 mg/m²
Irinotecan 140 mg/m²
5FU 2,400 mg/m²

“Full dose” FOLFIRIONX

Sponsored by Rafael
L-asparaginase prolongs survival in a pilot trial in patients after failure of frontline therapy

<table>
<thead>
<tr>
<th>Time (Weeks)</th>
<th>Chemotherapy plus eryaspase</th>
<th>Chemotherapy alone</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Events n (%)</th>
<th>Censored n (%)</th>
<th>OS HR (95% CI)</th>
<th>P-value</th>
<th>Median OS (weeks)</th>
<th>OS rate at 24 weeks</th>
<th>OS rate at 52 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 (83%)</td>
<td>16 (17%)</td>
<td>0.60 (0.40, 0.88)</td>
<td>0.009</td>
<td>26.1</td>
<td>46%</td>
<td>15%</td>
</tr>
<tr>
<td>40 (87%)</td>
<td>6 (13%)</td>
<td></td>
<td></td>
<td>19.0</td>
<td>37%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Hammel et al, ESMO 2017
Immunotherapy for pancreatic cancer

- Pancreas cancer is non-immunogenic because:
 - immunosuppressive cells and cytokines
 - low tumor mutational burden
 - paucity of T cells in tumor (number and function)

- Single agent therapeutic approaches focusing on overcoming T-cell immunologic endpoints with immune checkpoint inhibitors or vaccines are not encouraging

Royal Re et al. J Immonother 210;33:828-833
PD-1 inhibitor (durvalumab) with or without CTLA4 inhibitor (tremelimimumab): did not work!

O’Reilly et al, ASCO GI, 2018
MSI-high pancreatic cancers (1-2%) may respond to PD-1 inhibitors
Targeting tumor infiltrating macrophages (TAMs) and myeloid derived suppressor cells

- Myeloid-derived suppressor cells promote disease progression, metastasis, and immune suppression
- Targeting macrophages can improve cytotoxic efficacy and increases antitumor T-cell response in animals
- Targeting macrophage signaling (e.g., CCR2) will block myeloid monocyte/macrophage recruitment to tumor microenvironment

Select major ongoing immunotherapy combination studies in advanced pancreatic cancer

- CD40 agonist
- Anti-CXCR4
- XRT
- PD-1i/PD-L1i
- Chemo
- Vaccines
- Anti-CSF1R
Stay tuned to these randomized trials!

<table>
<thead>
<tr>
<th>Study</th>
<th>Target(s)</th>
<th>Drug</th>
<th>Biology</th>
<th>Chemo platform</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOLVE</td>
<td>Bruton’s tyrosine</td>
<td>Ibrutinib</td>
<td>mast-cells, inflammation, activity of T cells</td>
<td>Gem/Nab-paclitaxel</td>
<td>II/III</td>
</tr>
<tr>
<td></td>
<td>kinase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQUOIA</td>
<td>IL-10 receptor</td>
<td>pegilodecakin</td>
<td>Enhance T cells</td>
<td>FOLFOX*</td>
<td>III</td>
</tr>
<tr>
<td>CanStem111P</td>
<td>STAT3</td>
<td>napabucassin</td>
<td>Cancer stem cells</td>
<td>Gem/Nab-paclitaxel</td>
<td>III**</td>
</tr>
<tr>
<td>CARRIE</td>
<td>IGF-1R/</td>
<td>MM-141</td>
<td>signaling</td>
<td>Gem/Nab-paclitaxel</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Erb-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Second line
** N > 1,00

NCT02436668, NCT02923921, NCT02993731, NCT02399137
Systemic therapy landscape for metastatic pancreatic cancer in 2018: outside of a clinical trial

Relapse/progression < 6 months of adjuvant therapy

- Got mFFX
 - Gem NAP
 - mFFX NAL/FU OFF FOLFOX
 - OFF NAL/FU

- Got Gem-based
 - Gem NAP
 - mFFX
 - NAP OFF FOLFOX

Metastatic de novo

- PS 0-2
 - mFFX
 - Gem NAP

- PS 3
 - mFFX
 - NAL/FU FOLFOX
 - OFF FOLFOX NAL/FU

BRCA mutated

- Platinum based
 - PARPi
 - OFF FOLFOX NAL/FU

MSI-High

- Chemo
- PD-1i

mFFX = modified FOLFIRINOX
NAP = nabpaclitaxel
NAL = naliri
OFF = oxaliplatin/5FU
Molecular subtyping of pancreatic cancer: limited relevance to the clinic at this time, but room for improvement!

Le Large, TY et al, Seminars in Cancer Biology (2017), http://dx.doi.org/10.1016/j.semcancer.2017.03.008
Conclusions

• Conventional cytotoxic drug combinations produced modest incremental improvements in survival of metastatic pancreatic cancer

• Treatment strategies to improve patient tolerance and allow prolonged exposure may improve outcome

• Radiational targeted therapies failed in the clinic and a shift of paradigm to targeting key biological events is under way

• Promising areas of progress are in DNA repair, stromal targeting and tumor metabolism

• Immunotherapy failed in its traditional single agent approach but combinations may hold promise
Thank you!

philipp@Karmanos.org