Chemotherapy and targeted therapy of non-small cell lung cancer

Rolf Stahel
University Hospital of Zürich
Chemotherapy can prolong survival in patients with advanced NSCLC – report of a Canadian multicenter randomized trial
Chemotherapy of NSCLC: a meta-analysis using updated data on individual patients from 52 randomized trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>No of patients entered</th>
<th>No of events/No of patients entered</th>
<th>Variance</th>
<th>Observed - expected deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supportive care</td>
<td>Supportive care plus chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term alkylating agents:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford</td>
<td>120/121</td>
<td>62/67</td>
<td>16.40</td>
<td>43.80</td>
</tr>
<tr>
<td>Quebec</td>
<td>20/20</td>
<td>18/18</td>
<td>-4.38</td>
<td>7.99</td>
</tr>
<tr>
<td>Subtotal</td>
<td>140/141</td>
<td>80/85</td>
<td>12.02</td>
<td>51.79</td>
</tr>
<tr>
<td>Vinca alkaloids/etoposide:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gwent 2</td>
<td>96/111</td>
<td>67/75</td>
<td>-5.15</td>
<td>38.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>96/111</td>
<td>67/75</td>
<td>-5.15</td>
<td>38.00</td>
</tr>
<tr>
<td>Cisplatin based:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLW 8351</td>
<td>84/86</td>
<td>80/81</td>
<td>-8.06</td>
<td>39.94</td>
</tr>
<tr>
<td>NCIC CTG</td>
<td>95/97</td>
<td>51/53</td>
<td>-11.28</td>
<td>28.24</td>
</tr>
<tr>
<td>Southampton</td>
<td>17/17</td>
<td>15/15</td>
<td>1.16</td>
<td>7.55</td>
</tr>
<tr>
<td>NRH</td>
<td>44/44</td>
<td>40/43</td>
<td>2.93</td>
<td>18.72</td>
</tr>
<tr>
<td>UCLA</td>
<td>31/32</td>
<td>30/31</td>
<td>-4.83</td>
<td>14.53</td>
</tr>
<tr>
<td>Ancona 1</td>
<td>63/63</td>
<td>65/65</td>
<td>-5.72</td>
<td>30.95</td>
</tr>
<tr>
<td>AOU-Udine</td>
<td>52/52</td>
<td>50/50</td>
<td>-14.98</td>
<td>18.77</td>
</tr>
<tr>
<td>CEP-85</td>
<td>23/25</td>
<td>21/24</td>
<td>-10.52</td>
<td>6.61</td>
</tr>
<tr>
<td>Subtotal</td>
<td>409/416</td>
<td>352/362</td>
<td>-51.31</td>
<td>165.31</td>
</tr>
<tr>
<td>Total</td>
<td>645/668</td>
<td>499/522</td>
<td>-44.44</td>
<td>255.09</td>
</tr>
</tbody>
</table>
Systemic therapy of NSCLC: A plateau had been reached.
2nd line NSCLC phase III: Docetaxel vs BSC

MST 7.5 vs 4.7 months

OS 7.5 vs 6.4 ms

Shepherd, JCO 2000
Histological classification is necessary for decision making in advanced NSCLC

• A diagnosis of “non-small cell lung cancer” is no longer acceptable as sufficient basis for treatment decisions:
 • Cisplatin superior to carboplatin in adenocarcinoma
 Ardizzoni, JNCI 2007
 • Benefit of bevacizumab added to first line chemotherapy in non-squamous cell carcinoma
 Sandler, JCO 2006; Reck; JCO 2009; Zhou, JCO 2015
 • Differential effect of pemetrexed in non-squamous vs squamous cell carcinoma and pemetrexed maintenance
 Scagliotti, JCO 2008; Paz-Ares, JCO 2013
 • Histology will help guide decision about further molecular analysis
Pathological diagnosis

- Pathological diagnosis of all sample types should be made according to the 2015 WHO classification
- Immunohistochemistry (IHC) should be used to increase the specificity of diagnosis in the small sample setting and reduce the NSCLC-NOS (not otherwise specified) rate to fewer than 10% of cases diagnosed [IV, A]
- Minimal IHC should be used. Two markers only, p40 or p63 to predict squamous cell carcinoma and TTF1 to predict adenocarcinoma, are generally all that is required
- EGFR mutation status should be systematically analysed in advanced NSCC [I, A]
- Testing for ALK rearrangement should be systematically carried out in advanced NSCC [II, A]
Molecular testing in non-squamous cell NSCLC at University Hospital Zürich

Diagnoses of advanced disease

Failure of first line treatment

Progression under target therapy

If positive: FISH confirmation

If all negative or MET IHC positiv:
NGS (OFA panel):
BRAF Mutationen
HER2 Mutationen
HER2 Amplifikation
MET Exon 14
RET Translokationen

Re-biopsie und/oder liquid biopsy
NGS (OFA panel):
Resistenzmechanismen

stainings

EGFR-Mutation
KRAS-Mutation
Sanger Sequencing

(TTF1)
PD-L1
ALK
ROS1
cMET
What can we conclude for the first line therapy of advanced NSCLC without oncogenic driver mutation

- There is no single platinum-based doublet standard chemotherapy, however pemetrexed combinations are favoured in non-squamous cell NSCLC
- If platinum-based chemotherapy is indicated, a combination with bevacizumab is a treatment option in eligible patients with non-squamous NSCLC. In this case, carboplatin/paclitaxel is the preferred combination
- Pemetrexed maintenance therapy is an option for patients with non-squamous NSCLC without progression after first line therapy
- Immune checkpoint inhibition with pembrolizumab is becoming an option for patients with tumors with strong PD-L1 expression
- Current developments in first line immunotherapy are moving into chemotherapy71O or IO71O combinations
ESMO clinical practice guidelines in metastatic non-squamous cell carcinoma: 1st line

ESMO clinical practice guidelines in metastatic non-squamous cell carcinoma: 1

- <70 years and PS 0-1
 - 4-6 cycles:
 - Cisplatin – pemetrexed (II, A)
 - Cisplatin – gemcitabine (I, B)
 - Cisplatin – docetaxel (I, B)
 - Carboplatin – pachlita (I, B)
 - Carboplatin – nab-paclitaxel (I, B)
 +/- bevacizumab

- <70 years and PS 2 or >70 years and PS 0-2
 - 4-6 cycles:
 - Carboplatin-based doublets (II, B)
 - Single-agent chemotherapy
 - Gemcitabine (I, B)
 - Paclitaxel (I, B)
 - Paclitaxel (I, A)

- PS 0-1
 - Partial response or stable disease

- Maintenance treatment:
 - Pemetrexed (switch) (II, B)
 - Pemetrexed (continuation) (I, A)
 - Erlotinib (EGFR-activating mutation) (I, B)
 +/- bevacizumab (II given below)

- PS 3-4
 - BSC [II, B]

Bevacizumab added to chemotherapy: Initial Phase III trials

E4599

1. **Previously untreated, stage IIIb, IV or recurrent non-equamous NSCLC (n=878)**
2. **Primary endpoint: OS**
 - CP x 6 (n=444)
 - Bevacizumab (15mg/kg) every 3 weeks + CP x 6 (n=534)
 - Bev
 - CP

AVAIL

1. **Previously untreated, stage IIIb, IV or recurrent non-equamous NSCLC (n=1,343)**
2. **Primary endpoint: PFS**
 - Placebo (15mg/kg) + CG x 6 (n=351)
 - Bevacizumab (7.5mg/kg) + CG x 6 (n=351)
 - Placebo
 - Bev

E4599 overall patient population

- **HR**: 0.79 (95% CI: 0.67-0.92)
- **p value**: 0.003
- **Median OS**:
 - CP (n=444): 12.3 months
 - Bevacizumab 7.5mg/kg + CP (n=454): 10.3 months

Graphs

- **A**: Progression-Free Survival (probabilty)
- **B**: Progression-Free Survival (probability)

Sandler, NEJM 2006; Reck, JCO 2009
BEYOND: A randomized, double-Blind, placebo-controlled, multicenter, phase III study of 1st line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with NSCLC

Randomly assigned treatment
- Pi + CP
- B + CP

Median PFS 6.5 vs 9.2 months
HR, 0.40; 95\% CI, 0.29 to 0.54
P < .001

Randomly assigned treatment
- Pi + CP
- B + CP

Median OS 17.7 vs 24.3 months
HR, 0.68; 95\% CI, 0.50 to 0.93
P = .0154

No. at risk
Pi + CP 138
B + CP 138

Time of Study (month)

Overall Survival (proportion)
Cisplatin-pemetrexed vs cisplatin-gemcitabine in advanced NSCLC

Overall no difference in PFS or survival between study arms

Cis/pem better than in non-squamous cell carcinoma
(HR 0.81, p=0.005)

Cis/pem inferior than cis/gem in squamous cell carcinoma
(HR 1.23, p=0.05)
PARAMOUNT: Overall survival

Induction Therapy
4 cycles, q21d

Continuation Maintenance Therapy
q21d until PD

- Previously untreated
- PS 0/1
- Stage IIIB-IV NS-NSCLC

CR/PR/SD per RECIST

2:1

Pemetrexed + Cisplatin

Pemetrexed + BSC

Placebo + BSC

Stratified for:
- PS (0 vs 1)
- Disease stage (IIIB vs IV) prior to induction
- Response to induction (CR/PR vs SD)

A

Survival Probability (%)

Time From Random Assignment (months)

Pemetrexed: median = 13.3 mos (12.8 to 16.0 mos)
Placebo: median = 11.6 mos (10.6 to 12.5 mos)
Log-rank P = .0195
Unadjusted HR: 0.78 (0.64 to 0.96)

B

Survival Probability (%)

Time From Induction (months)

Pemetrexed: median = 16.9 mos (15.9 to 19.0 mos)
Placebo: median = 14.6 mos (12.9 to 15.5 mos)
Log-rank P = .0191
Unadjusted HR: 0.78 (0.64 to 0.96)

CR/PR
HR = 0.81

SD
HR = 0.76

No. at risk
Pemetrexed + BSC
Placebo + BSC

Paz-Ares, JCO 2013
First line systemic therapy in the elderly and frail

- In patients with PS 2, chemotherapy compared with BSC prolongs survival and improves QoL [I, B]
- Carboplatin-based combination chemotherapy should be considered in eligible PS 2 patients [II, A]
- Single-agent chemotherapy with gemcitabine, vinorelbine and docetaxel is an alternative treatment option [I, B]
- Poor PS (3–4) patients should be treated with BSC only [II, B]
ESMO clinical practice guidelines in metastatic squamous cell carcinoma: 1st line

Stage IV SCC

- Never or former light smoker (<15 packs/year)
- Molecular test (ALK/EGFR)
- Molecular test negative
- Molecular test positive
- Targeted therapy

- Age
- PS

- <70 years and PS 0-1
- 4-6 cycles:
 - Cisplatin – gemcitabine ([I, A])
 - Cisplatin – docetaxel ([I, A])
 - Cisplatin – vinorelbine ([I, A])
 - Carboplatin – paclitaxel ([I, A])
 - Carboplatin – nab-paclitaxel ([II, B])
 - Cisplatin – gemcitabine – nectarhumab (II EGFR: expression by IHC) ([I, B, MCBRS I])

- <70 years and PS 2 or >70 years and PS 0-2
- 4-6 cycles:
 - Carboplatin-based doublets ([II, B])
 - Single-agent chemotherapy (gemcitabine, vinorelbine or docetaxel) ([I, A])

- PS 3-4
- BSC ([II, B])

Gemcitabine and cisplatin with or without necitumumab in squamous cell lung cancer
Second and further line therapy for patients with NSCLC without oncogenic driver mutation – the shift to immunotherapy

- Docetaxel, or pemetrexed if not used in first line, used to be the standard of care
- The addition of nintedanib to docetaxel in non-squamous NSCLC and the addition of ramucirumab to docetaxel in all histologies of NSCLC is associated with small, but significant survival improvement over docetaxel alone
- Second line therapy with single agent immune checkpoint inhibitors (nivolumab, pembrolizumab or atezolizumab) provides a survival advantage over chemotherapy and is associated with fewer side effects and better quality of life
Second line chemotherapy and antiangiogenic agent in advanced NSCLC

LUME-Lung 1: Nintedanib in adenocarcinoma

Reck, Lancet Oncol 2014

OS 12.6 vs 10.3 months

REVEL: Ramucirumab in all histologies

Garon, Lancet Oncol 2014

OS 10.5 vs 9.1 months
NSCLC with oncogenic driver mutations: current status

EMA approval in NSCLC

Available otherwise

Key
1 - Phase I
2 - Phase II
3 - Phase III
4 - Approved

MEK1
- Trametinib
- Selumetinib
- Cobimetinib

PIK3CA
- LY3023414
- PQR 309

NTRK1
- Entrectinib
- LOXO-101
- Cabozantinib

BRAF
- Dasatinib
- Trametinib

ROS1
- Crizotinib
- Cabozantinib

MET
- Crizotinib
- Cabozantinib

HER2
- Trastuzumab emtansine
- Afatinib
- Dacomitinib

ALK
- Crizotinib
- Alectinib
- Ceritinib
- Lorlatinib
- Brigatinib

NTRK1
- Entrectinib
- LOXO-101
- Cabozantinib

EGFR Sensitizing
- Gefitinib
- Erlotinib
- Afatinib
- Osimertinib
- Runitritinib

Unknown Oncogenic Driver Detected
31%

Shaw, NEJM 2014
Planchard, Lancet Oncol 2016

Tsao, JTO 2016
Where do we stand with targeted therapy in first line for patients with NSCLC with activating EGFR mutations?

- There is no clear preference between the three EGFR TKIs approved by the EMA.
- The combination of erlotinib and bevacizumab has been approved by EMA based on a Japanese study and supported by the BELIEF trial.
- Osimertinib has been approved for patients with acquired T790M mutation based on superior PFS as compared to platin-based combination therapy. Osimertinib had excellent activity in patients with CNS metastases.
- The FLAURA randomized phase III trial has documented a superiority of osimertinib over first generation TKIs in terms of progression-free survival for patients with activating EGFR mutations.
First TKI versus chemotherapy in EGFR mutated NSCLC

Mok, NEJM 2009

Rosell, Lancet Oncol 2012
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Treatment Arm</th>
<th>Control Arm</th>
<th>Stage</th>
<th>mPFS</th>
<th>Median OS</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPASS</td>
<td>1217</td>
<td>Gefitinib</td>
<td>Carboplatin/placinaxel</td>
<td>IIIB/IV</td>
<td>5.7 vs 5.8 mo (EGFR-mutated patients HR = 0.48; nonmutated patients HR = 2.84)</td>
<td>18.6 vs 17.3 mo (P = NS)</td>
<td>First-line</td>
</tr>
<tr>
<td>WJTOG3405</td>
<td>177</td>
<td>Gefitinib</td>
<td>Cisplatin, docetaxel</td>
<td>IIIB/IV</td>
<td>9.2 vs 6.3 mo (P < .001)</td>
<td></td>
<td>First-line</td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>165</td>
<td>Erlotinib</td>
<td>Carboplatin/gemcitabine</td>
<td>IIIB/IV</td>
<td>13.6 vs 4.6 mo (HR = 0.16, P < .0001)</td>
<td></td>
<td>First-line</td>
</tr>
<tr>
<td>EURTAC</td>
<td>153</td>
<td>Erlotinib</td>
<td>Platinum-based chemotherapy</td>
<td>IIIB/IV</td>
<td>9.4 vs 5.2 mo (HR = 0.42, P < .0001)</td>
<td>22.9 vs 18.8 mo (P = .42)</td>
<td>First-line</td>
</tr>
</tbody>
</table>
LUX-Lung 7: Comparison of afatinib versus gefitinib in first line treatment of EGFR-mutated NSCLC

- Stage IIIIB/IV adenocarcinoma of the lung
- EGFR mutation (Del19 and/or L858R) in the tumor tissue
- No prior treatment for advanced/metastatic disease
- ECOG PS 0/1

Primary endpoints:
- PFS (independent)
- TTF
- OS

Secondary endpoints:
- ORR
- Time to response
- Duration of response
- Duration of disease control
- Tumor shrinkage
- HRQoL
- Safety

Controlled ZNS metastases included

PFS

<table>
<thead>
<tr>
<th>Median, mo</th>
<th>Afatinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.0</td>
<td>10.9</td>
</tr>
</tbody>
</table>

HR (95% CI) 0.74 (0.57–0.95)
p-value 0.0178

LUX-Lung 7: Comparison of afatinib versus gefitinib in first line treatment of EGFR-mutated NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Afatinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grades 1-2</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Total</td>
<td>106 (66%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>124 (78%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Rash or acne*</td>
<td>127 (79%)</td>
<td>0</td>
</tr>
<tr>
<td>Stomatitis†</td>
<td>96 (60%)</td>
<td>7 (4%)</td>
</tr>
<tr>
<td>Paronychia</td>
<td>86 (54%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>52 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Pruritus</td>
<td>37 (23%)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue‡</td>
<td>24 (15%)</td>
<td>9 (6%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>25 (16%)</td>
<td>1 (1%)</td>
</tr>
</tbody>
</table>
LUX-Lung 7: Comparison of afatinib versus gefitinib in first line treatment of EGFR-mutated NSCLC

Estimated PFS probability

<table>
<thead>
<tr>
<th></th>
<th>Afatinib (n=160)</th>
<th>Gefitinib (n=159)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median, months</td>
<td>27.9</td>
<td>24.5</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.86 (0.66–1.12)</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.2580</td>
<td></td>
</tr>
</tbody>
</table>

No. at risk:
- Afatinib: 160
- Gefitinib: 159

Time (months)

<table>
<thead>
<tr>
<th></th>
<th>Del19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afatinib N=93</td>
<td>Gefitinib N=93</td>
</tr>
<tr>
<td>Median, mo</td>
<td>30.7</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.83 (0.58–1.17)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.2641</td>
</tr>
</tbody>
</table>

No. at risk:
- Afatinib: 93
- Gefitinib: 93

Time (months)

<table>
<thead>
<tr>
<th></th>
<th>L858R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afatinib N=67</td>
<td>Gefitinib N=66</td>
</tr>
<tr>
<td>Median, mo</td>
<td>25.0</td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>0.91 (0.62–1.36)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.6085</td>
</tr>
</tbody>
</table>

No. at risk:
- Afatinib: 67
- Gefitinib: 66

Pas-Ares, ESMO 2016
Afatinib in uncommon EGFR mutations: Specific mutations of relative frequency

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Objective response</th>
<th>Progression-free survival (months)</th>
<th>Overall survival (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly719Xaa (n=18)</td>
<td>Gly719Xaa (n=8)</td>
<td>14 (77.8%, 52.4–93.6)</td>
<td>13.8 (6.8–NE)</td>
</tr>
<tr>
<td>Gly719Xaa+Thr790Met (n=1)</td>
<td>Gly719Xaa+Ser768Ile (n=5)</td>
<td>Gly719Xaa+Leu861Gln (n=3)</td>
<td>Gly719Xaa+Thr790Met+Leu858Arg (n=1)</td>
</tr>
<tr>
<td>Leu861Gln (n=16)</td>
<td>Leu861Gln (n=12)</td>
<td>9 (56.3%, 29.9–80.2)</td>
<td>8.2 (4.5–16.6)</td>
</tr>
<tr>
<td>Leu861Gln+Gly719Xaa (n=3)</td>
<td>Leu861Gln+Del19 (n=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser768Ile (n=8)</td>
<td>Ser768Ile (n=1)</td>
<td>8 (100.0%, 63.1–100.0)</td>
<td>14.7 (2.6–NE)</td>
</tr>
<tr>
<td>Ser768Ile+Gly719Xaa (n=5)</td>
<td>Ser768Ile+Leu858Arg (n=2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are n (%; 95% CI) or median (95% CI). NE=not estimable. Uncommon mutation categories overlap for those with compound mutations, so individual patients might appear in more than one category.

Yang, Lancet Oncology 2015
Gefitinib plus chemotherapy versus chemotherapy in EGFR mutation-positive NSCLC resistant to first-line gefitinib (IMPRESS)

PFS

- **HR 0.86 (95% CI 0.65-1.13); p=0.27**

OS

- **Probability of Overall Survival**
 - Gefitinib plus CT
 - Placebo plus CT

Patients
- Age 18-80 years (≥ 30 years in Japan)
- WHO PS 0-1
- Histologically confirmed stage IIIb or stage IV NSCLC with EGFR mutation-positive advanced NSCLC
- Chemotherapy-naive
- Achieved CR, PR, or stable disease for ≥ 6 months or ≥ 16 months with time-to-progression
- Disease progression (RECIST™ ≤ weeks prior to study randomisation)

Endpoints
- **Primary**
 - Progression-free survival
- **Secondary**
 - Overall survival
 - Objective response
 - Disease control rate
 - Safety
 - Health-related quality of life
 - Biosimilarity

Soria, Lancet Oncol 2015; Mok, JCO 2017
EGFR-mutated advanced NSCLC: Erlotinib with bevacizumab in first-line

- **JO25567**: Ph2, randomized, Japanese multicenter, open-label[a]

BELIEF: Ph2, multicenter, single-arm study, stratified by pretreatment T790M status[b]

PFS

Seto, Lancet Oncol 2014; Rosell, Lancet Respir Med. 2017
Multiple reasons for acquired resistance to TKIs

Pharmacological

- Non-compliance/dose reduction or interruption
- Acquired reduction in drug concentration
- Reduced permeability of BBB: decreased CNS penetration

Altered drug target

- Resistance mutations in same drug target
- Gene copy number gain of drug target
- Coincident in same cell (second drivers)
- Emergence of distinct clone (separate driver)

T790M mutation causes drug resistance in over 50% of patients by increased the affinity for ATP as compared to TKIs

Not shown:
- Phenotypic change
- Manipulation of downstream signalling pathways

Camidge Nat Rev Clin Oncol 2014
EGFR TKIs

First generation EGFR TKIs
- gefitinib
- erlotinib

Second generation EGFR TKIs
- afatinib

Third generation EGFR TKIs
- AZD9291
- rociletinib

Inhibitory concentration of EGFR TKI

Higher
- del + T790M
- L858R + T790M
- del/L858R + T790M
- C797S

Lower
- exon19 deletion(del)
- L858R
- del + T790M
- L858R + T790M
AURA3: Osimertinib or platinum-pemetrexed in EGFR TKI pretreated EGFR T790M–positive NSCLC

Patients
Chemotherapy naive
Activating EGFR mutation
Centrally confirmed T790M
PD on first-/second-generation EGFR TKI

Osimertinib (80 mg daily) n=279

Platinum / pemetrexed n=140

<table>
<thead>
<tr>
<th></th>
<th>Osimertinib 80 mg n=30</th>
<th>Chemotherapy n=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS ORR (95% CI)</td>
<td>70% (51, 85)</td>
<td>31% (11, 59)</td>
</tr>
<tr>
<td>Odds ratio (95% CI)</td>
<td>5.13 (1.44, 20.64), P = .015</td>
<td></td>
</tr>
<tr>
<td>Median time to response, weeks</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Median Duration of Response, months (95% CI)</td>
<td>8.9 (4.3, NC)</td>
<td>5.7 (NC, NC)</td>
</tr>
<tr>
<td>DCR (95% CI)</td>
<td>93% (78, 99)</td>
<td>63% (35, 85)</td>
</tr>
</tbody>
</table>

Mok, NEJM 2017
AURA3: Osimertinib or platinum-pemetrexed in EGFR TKI pretreated EGFR T790M-positive NSCLC

A Patients in Intention-to-Treat Population

Hazard ratio for disease progression or death, 0.30 (95% CI, 0.23–0.41)
P<0.001

No. at Risk
Osimertinib 279 240 162 88 50 13 0
Platinum–pemetrexed 140 93 44 17 7 1 0

Median Progression-free Survival
mo (95% CI)
Osimertinib 279 10.1 (8.3–12.3)
Platinum–pemetrexed 140 4.4 (4.2–5.6)

Mok, NEJM 2017
Mechanisms of resistance to third generation EGFR TKIs

- MET amplification [osimertinib]
 - MET amplification [osimertinib]
 - HER2 amplification [osimertinib]
 - EGFR amplification [osimertinib]
 - Tertiary EGFR mutations L718Q, L844V, C797S [WZ4002, osimertinib]
 - C797S [osimertinib]
 - EGFR amplification [rociletinib]

- P13K E545K mutation [osimertinib]
 - RAS mutation [osimertinib]
 - NRAS E63K mutation [osimertinib]
 - Gain in copy number of WT NRAS /KRAS [osimertinib]
 - BRAF V600E mutation [osimertinib]

- Others:
 1) Small cell [rociletinib]
 2) Loss of T790M [osimertinib, rociletinib]

- EMT [rociletinib]

Cell proliferation + survival
Osimertinib as first-line treatment: Biomarker at progression

- 38/42 with plasma for NGS at RECIST-defined progression:
 - 19 detectable DNA
 - 9 identified with putative resistance mechanisms

<table>
<thead>
<tr>
<th>Baseline EGFR mutation</th>
<th>Post-dose plasma EGFR mutation (allelic fraction %)</th>
<th>Post-dose plasma resistance identified (allelic fraction %, copies)</th>
<th>Other post-dose plasma mutations identified (allelic fraction %)</th>
<th>Total time receiving osimertinib (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex19del*</td>
<td>None detected</td>
<td>JAK2 V617F (1.5%)</td>
<td>None detected</td>
<td>29.9+</td>
</tr>
<tr>
<td>Ex19del</td>
<td>Ex19del (5.2%)</td>
<td>EGFR C797S (3.0%)</td>
<td>P53 R273H (6.6%), CTNNB1 G34V (6.5%)</td>
<td>27.8+</td>
</tr>
<tr>
<td>L858R</td>
<td>L858R (16.7%)</td>
<td>PIK3CA E545K (1.6%)</td>
<td>P53 H179R (13.3%), PTEN Q171* (8.1%), NOTCH G2299G (4.6%)</td>
<td>26.3</td>
</tr>
<tr>
<td>Ex19del</td>
<td>Ex19del (34.6%)</td>
<td>MET CNV (3.0 copies)</td>
<td>RB1 R255* (64.1%), P53 pHis179fs (62.9%)</td>
<td>26.3</td>
</tr>
<tr>
<td>Ex19del</td>
<td>None detected</td>
<td>KRAS G12D (8.6%)</td>
<td>CTNNB1 S37F (3.6%)</td>
<td>24.9</td>
</tr>
<tr>
<td>L858R and T790M</td>
<td>L858R (4%) + T790M (5%)</td>
<td>EGFR C797S (1%)</td>
<td>NF2 T352M (1.5%)</td>
<td>14.5</td>
</tr>
<tr>
<td>Ex19del</td>
<td>Ex19del (7.5%)</td>
<td>KRAS CNV (3.7 copies), EGFR CNV (3.0 copies)</td>
<td>P53 H175M (15.9%), RB1 pLys427fs (9.9%)</td>
<td>14.3</td>
</tr>
<tr>
<td>G719S and S768I</td>
<td>G719S (6.9%) + S768I (5.7%)</td>
<td>MEK1 (MAP2K1) G128V (3.2%)</td>
<td>SMAD4 G358E (4.6%), PDGFR A S961C (1.1%)</td>
<td>5.6</td>
</tr>
<tr>
<td>L858R</td>
<td>None detected</td>
<td>HER2 ex20 ins (12.3%), HER2 E1247K (4.2%)</td>
<td>P53 R213* (6.3%), IDH2 R140Q (2.5%)</td>
<td>1.2</td>
</tr>
</tbody>
</table>

CNV, copy number variant; Ex19del, Exon 19 deletion; ND, none detected

*Mutation identified by local testing
+ indicates that the patient remained on osimertinib at the time of data cutoff
Osimertinib resistance mediated by loss of \textit{EGFR} T790M is associated with early resistance and competing resistance mechanisms.

37 | Oxnard, WCLC 2017

[Diagram showing T790M loss vs. T790M maintained resistance with various genotypes and outcomes.]
FLAURA: First or third generation TKI inhibitors as first line therapy for patients with EGFR mutated NSCLC

Endpoints
- Primary endpoint: PFS based on investigator assessment (according to RECIST 1.1)
 - The study had a 90% power to detect a hazard ratio of 0.71 (representing an improvement in median PFS from 10 months to 14.1 months) at a two-sided alpha-level of 5%
- Secondary endpoints: objective response rate, duration of response, disease control rate, depth of response, overall survival, patient reported outcomes, safety

<table>
<thead>
<tr>
<th>Characteristic, %</th>
<th>Osimertinib (n=279)</th>
<th>SoC* (n=277)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: male / female</td>
<td>36 / 64</td>
<td>38 / 62</td>
</tr>
<tr>
<td>Age, median (range), years</td>
<td>64 (26–85)</td>
<td>64 (35–93)</td>
</tr>
<tr>
<td>Race: White / Asian / other*</td>
<td>36 / 62 / 1</td>
<td>36 / 62 / 1</td>
</tr>
<tr>
<td>Smoking status: never / ever</td>
<td>65 / 35</td>
<td>63 / 37</td>
</tr>
<tr>
<td>CNS metastases at study entry*</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>WHO performance status*: 0 / 1</td>
<td>40 / 60</td>
<td>42 / 58</td>
</tr>
<tr>
<td>Overall disease classification*: metastatic / advanced</td>
<td>95 / 5</td>
<td>95 / 5</td>
</tr>
<tr>
<td>Histology: adenocarcinoma / other</td>
<td>99 / 1</td>
<td>98 / 2</td>
</tr>
<tr>
<td>EGFR mutation at randomisation*: Exon 19 deletion / L858R</td>
<td>63 / 37</td>
<td>63 / 37</td>
</tr>
</tbody>
</table>

* Crossover was allowed for patients in the SoC arm, who could receive open-label osimertinib upon central confirmation of progression and T790M positivity.
FLAURA: Primary endpoint progression-free survival

342 events in 556 patients at DCO: 62% maturity; osimertinib: 136 events (49%), SoC: 206 events (74%)

Median PFS, months (95% CI)
- Osimertinib: 18.9 (15.2, 21.4)
- SoC: 10.2 (9.6, 11.1)

HR 0.46
(95% CI 0.37, 0.57)

p<0.0001
141 deaths in 556 patients at DCO: 25% maturity; osimertinib: 58 deaths (21%), SoC: 83 deaths (30%)

Median overall survival

HR 0.63
(95% CI 0.45, 0.88)
p=0.0068†

†A p-value of <0.0015 was required for statistical significance at current maturity
Table S4. Reason for CNS progression, by investigator assessment (full analysis set)

<table>
<thead>
<tr>
<th>Reason for progression</th>
<th>Known/treated CNS metastases at trial entry</th>
<th>No known/treated CNS metastases at trial entry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Osimertinib (n=53)</td>
<td>Osimertinib (n=226)</td>
</tr>
<tr>
<td></td>
<td>Standard EGFR-TKI (n=63)</td>
<td>Standard EGFR-TKI (n=214)</td>
</tr>
<tr>
<td></td>
<td>Number (percent)</td>
<td>Number (percent)</td>
</tr>
<tr>
<td>Total number of progression events</td>
<td>29 (55)</td>
<td>107 (47)</td>
</tr>
<tr>
<td></td>
<td>53 (84)</td>
<td>153 (71)</td>
</tr>
<tr>
<td>Number of patients with progression due to</td>
<td>4 (8)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>death*</td>
<td>4 (6)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>Number of patients with CNS progression*</td>
<td>10 (19)</td>
<td>7 (3)</td>
</tr>
<tr>
<td></td>
<td>27 (43)</td>
<td>15 (7)</td>
</tr>
</tbody>
</table>

Soria, NEJM 2018
Where do we stand with targeted therapy in first line in patients with NSCLC with other oncogenic driver mutations

- Crizotinib is approved for the first line treatment of patients with ALK translocated and ROS1 translocated NSCLC
- Ceritinib, alectinib and brigatinib are approved for patients ALK translocated NSCLC progressing under crizotinib. Also there is limited access to lorlatinib in clinical studies or as compassionate use.
- The results of the J-ALEX and ALEX trial suggest alectinib to become the preferred first line therapy in ALK translocated NSCLC
- The combination of dabrafenib + trametinib has been approved by EMA for the treatment of BRAF V600 mutated NSCLC
- Other targets are under investigation
Crizotinib in first line: PRORILFE 1014

Salomon, NEJM 2014

Crizotinib (N = 172) vs. Chemotherapy (N = 171)

- Events, n (%):
 - Crizotinib: 100 (58)
 - Chemotherapy: 137 (80)
- Median, months:
 - Crizotinib: 10.9
 - Chemotherapy: 7.0
- HR (95% CI):
 - Crizotinib: 0.45 (0.35-0.60)
 - P < .0001

ALK+ disease according to FISH:
- Locally advanced or metastatic NSCLC
- No prior platinum-based chemotherapy regimen
- ECOG PS 0-2

Crizotinib 250mg BID

Pemetrexed/cisplatin or pemetrexed/carboplatin i.v.q3w

(n=343)
First-line ceritinib versus platinum-based chemotherapy in advanced \textit{ALK}-rearranged NSCLC (ASCEND-4):

\textbf{ASCEND-4:} randomised, multicentre, phase III, open-label study of 1L ceritinib vs chemo in ALK+ NSCLC²

- Newly diagnosed stage IIIB/IV or relapsed locally advanced or metastatic non-squamous NSCLC
- ALK+ disease according to IHC
- No previous treatment
- ≥1 measurable lesion as defined by RECIST 1.1

\textbf{Key Points:}
- Ceritinib 750mg/day
- Pemetrexed/cisplatin or pemetrexed/carboplatin i.v. q3w
- Maintenance therapy

\textbf{Median duration of follow-up:} 19.7 months
Alectinib vs crizotinib in treatment-naïve advanced ALK+ NSCLC: primary results of the global phase III ALEX study

ALEX: randomised, multicentre, phase III, open-label study of alectinib versus crizotinib in treatment-naïve ALK+ NSCLC

Stage IIIb/IV NSCLC
ALK+ disease
Treatment naïve
ECOG PD 0-2

(n=303)

Shaw, ASCO 2017; Peters, NEJM 2017
Alectinib vs crizotinib in treatment-naïve advanced ALK+ NSCLC: primary results of the global phase III ALEX study: CNS activity

- Competing risk of CNS progression, non-CNS progression, and death based on first event was analyzed

<table>
<thead>
<tr>
<th>CNS Progression, no Previous Systemic PD</th>
<th>Alectinib (n = 152)</th>
<th>Crizotinib (n = 151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pts with event, n (%)</td>
<td>18 (12)</td>
<td>68 (45)</td>
</tr>
<tr>
<td>Cause-specific HR (95% CI)</td>
<td>0.16 (0.10–0.28)</td>
<td>< .0001</td>
</tr>
</tbody>
</table>

Cumulative Incidence of CNS Progression

- Alectinib, 12-mo cumulative incidence rate: 9.4% (95% CI; 5.4–14.7)
- Crizotinib, 12-mo cumulative incidence rate: 41.4% (95% CI; 33.2–49.4)

Shaw, ASCO 2017; Peters, NEJM 2017
ALK inhibitors after crizotinib failure

<table>
<thead>
<tr>
<th></th>
<th>Alectinib NP28673 (IRC)</th>
<th>Alectinib NB28761 (IRC)</th>
<th>Brigatinib* (180mg qd) (IRC)</th>
<th>Ceritinib ASCEND-1 (prior ALKi)</th>
<th>Ceritinib ASCEND-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>n=122</td>
<td>n=69</td>
<td>n=110</td>
<td>N=163</td>
<td>N=140</td>
</tr>
<tr>
<td>ORR, %</td>
<td>50</td>
<td>51</td>
<td>55</td>
<td>56</td>
<td>39</td>
</tr>
<tr>
<td>DCR, %</td>
<td>79</td>
<td>80</td>
<td>86</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>mDoR, mos</td>
<td>11.2</td>
<td>13.5</td>
<td>13.8</td>
<td>8.3</td>
<td>9.7</td>
</tr>
<tr>
<td>mPFS, mos</td>
<td>8.9</td>
<td>8.1</td>
<td>15.6</td>
<td>6.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Toxicity issues</td>
<td>Very few</td>
<td>Dyspnea (low grade with lead-in 90mg 7days)</td>
<td>GI (impacting QoL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified from Perol, ELCC 2016

Pérol, ESMO 2016; Ahn, WCLC1017
ALK inhibitors after crizotinib failure: CNS activity

<table>
<thead>
<tr>
<th></th>
<th>Alectinib (n=60)</th>
<th>Brigatinib (180mg qd) (n=18)</th>
<th>Ceritinib ASCEND-2 (n=20)</th>
<th>Ceritinib ASCEND-1 (n=75)</th>
<th>Ceritinib ASCEND-1 (n=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS ORR, %</td>
<td>64</td>
<td>67</td>
<td>45</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>CR, %</td>
<td>22</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>CNS DCR, %</td>
<td>80</td>
<td>83</td>
<td>80</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td>CNS mDoR, months</td>
<td>10.8</td>
<td>(7.4-NR)</td>
<td>-</td>
<td>6.9</td>
<td>11.1</td>
</tr>
</tbody>
</table>

- **CNS ORR, %** represents the percentage of patients achieving a Complete Response (CR) or a Partial Response (PR) in the central nervous system (CNS) compartment.
- **CR, %** represents the percentage of patients achieving a Complete Response (CR) in the CNS compartment.
- **CNS DCR, %** represents the percentage of patients achieving a Complete Response (CR) or a Partial Response (PR) in the CNS compartment.
- **CNS mDoR** represents the median duration of response in the CNS compartment.

Kim, ASCO 2016 and Pérol ELCC 2016