ESMO – THE CHRISTIE PRECEPTORSHIP PROGRAMME

1st line chemotherapy for advanced NSCLC

Benjamin BESSE, MD, PhD
Head Dpt of Cancer Medicine
DISCLOSURE OF INTEREST

No personal financial disclosures

Institutional grants for clinical and translational research

AstraZeneca, BMS, Boehringer-Ingelheim, Lilly, Pfizer, Roche-Genentech, Sanofi-Aventis, Servier, Onxeo, OncoMed, Inivata, OSE Pharma, Loxo, Blueprint
PD-L1 ≥ 50%
Pembrolizumab [I, A]

Adapted from Novello – Ann Oncol 2016
OUTLINE

Annals of Oncology

2nd ESMO Consensus Conference on Lung Cancer: non-small-cell lung cancer first-line/second and further lines of treatment in advanced disease

1Thoracic Group, Department of Cancer Medicine, Gustave Roussy, Villejuif, France; 2Medicine Oncology, Roswell Park Cancer Institute, Buffalo, USA; 3The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; 4Aarhus University Hospital, Aarhus, Denmark; 5Aberdeen Royal Infirmary Anchor Unit, Aberdeen, UK; 6Hospital Universitario Virgen del Rocío, Sevilla, Spain; 7Department of Thoracic Oncology, Krankenhaus Grosshansdorf, Grosshansdorf, Germany; 8Department of Pulmonary Diseases, Vrije University Medical Centre (VUMC), Amsterdam, The Netherlands; 9Oncology Unit, Third Department of Medicine, Athens Chest Hospital Sotiria, Athens, Greece; 10Clinic of Oncology, University Hospital Zürich, Zürich, Switzerland; 11Medical Oncology, Vall D’Hebron University Hospital, Barcelona, Spain; 12Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
Level of Evidence (LOE) scale

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evidence from at least one large randomized control trial of good methodological quality (low potential for bias) or meta-analyses of well-conducted randomized trials without heterogeneity</td>
</tr>
<tr>
<td>II</td>
<td>Small randomized trials or large randomized trials with a suspicion of bias (lower methodological quality) or meta-analyses of such trials or of trials demonstrated heterogeneity</td>
</tr>
<tr>
<td>III</td>
<td>Prospective cohort studies</td>
</tr>
<tr>
<td>IV</td>
<td>Retrospective cohort studies or case-control studies</td>
</tr>
<tr>
<td>V</td>
<td>Studies without control group, case reports, experts opinions</td>
</tr>
</tbody>
</table>

Strength of recommendation (SOR) scale

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong evidence for efficacy with a substantial clinical benefit, strongly recommended</td>
</tr>
<tr>
<td>B</td>
<td>Strong or moderate evidence for efficacy but with a limited clinical benefit, generally recommended</td>
</tr>
<tr>
<td>C</td>
<td>Insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs,...), optional</td>
</tr>
<tr>
<td>D</td>
<td>Moderate evidence against efficacy or for adverse outcome, generally not recommended</td>
</tr>
<tr>
<td>E</td>
<td>Strong evidence against efficacy or for adverse outcome, never recommended</td>
</tr>
</tbody>
</table>
OUTLINE - 1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Meta-analysis Chemo. vs BSC
Overall Survival

- N=2714
- 16 trials
- 9 with platin.
- 1 yr absolute benefit: 9% (20% to 29%).

HR=0.77 [0.71-0.83]
p=0.0001

NSCLC Meta-Analyses Collaborative Group JCO 08
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Retrospective analysis of the British Columbia Cancer Registry

Immediate CT ≤ 8 weeks

- Referred to a medical oncologist n= 694
 - Immediate chemo n= 319 (46%)
 - Watch and wait n= 166 (24%)
 - Best supportive care n= 209 (30%)

- Patient choice (n=20)
 - No progression (n=13)
 - Asymptomatic (n=3)
 - Patient Moved (n=1)
 - Declining ECOG (n=36)
 - Patient died (n=35)
 - Asymptomatic (n=1)
 - Comorbid Illness (n=1)

FUI = 70 days

FUI = 25 days

Noonan, WCLC 2013
Retrospective analysis of the British Columbia Cancer Registry

Immediate CT ≤ 8 weeks

- Referred to a medical oncologist
 - n= 694
 - Immediate chemo
 - n= 319 (46%)
 - Received chemo
 - n= 50 (30%)
 - Still on watch and wait
 - n= 37 (22%)
 - Watch and wait
 - n= 166 (24%)
 - Best supportive care
 - n= 209 (30%)
 - Missed opportunity for chemo
 - n= 72 (43%)
 - Lost to follow-up
 - n= 7 (4%)

 Median Follow-up interval (FUI) = 22 days

FUI = 70 days
Patient choice (n=20)
No progression (n=13)
Asymptomatic (n=3)
Patient Moved (n=1)

FUI = 25 days
Declining ECOG (n=36)
Patient died (n=35)
Asymptomatic (n=1)
Comorbid Illness (n=1)

Noonan, WCLC 2013
Overall Survival of Upfront CT versus WW Populations

Log-rank p-value < 0.0001

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Hazard Ratio for death (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upfront CT</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>WW-chemo</td>
<td>1.02 (0.74-1.40)</td>
<td>0.93</td>
</tr>
<tr>
<td>WW-missed</td>
<td>2.23 (1.69-2.94)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CPH Model Covariates:

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Hazard Ratio for death (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (%)</td>
<td>Male 1.00, Female 0.86 (0.70-1.06)</td>
<td>0.16</td>
</tr>
<tr>
<td>Age</td>
<td>0.99 (0.98-1.00)</td>
<td>0.24</td>
</tr>
<tr>
<td>ECOG PS</td>
<td>0-1 1.00, 2-4 1.40 (1.13-1.74)</td>
<td>0.002</td>
</tr>
</tbody>
</table>
OUTLINE
1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies

Recommendation:
The administration of first-line chemotherapy should be offered at diagnosis to asymptomatic patients with metastatic NSCLC. (B, III)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic ?
- Other strategies
Cisplatin or carboplatin?

CISCA

Response
CIS 30%
CARBO 24%
OR = 1.37
IC 95% = 1.16-1.61
P < .001

Survival
HR = 1.07
IC 95% = 0.99 to 1.15
P = .100

Survival benefit for 3rd generation combo

Ardizzoni JNCI 2007
Cisplatin: dose

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose (mg/m²)</th>
<th>Administration Schedule</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin/Vinorelbine</td>
<td>100</td>
<td>day 1/25 days 1, 8, 15, 22 every 4 weeks</td>
<td>[Fossella 2003 (28)]</td>
</tr>
<tr>
<td>Cisplatin/Vinorelbine</td>
<td>80</td>
<td>day 8/30 days 1 and 8</td>
<td>[Georgoulias 2005 (79)]</td>
</tr>
<tr>
<td>Cisplatin/Paclitaxel</td>
<td>75</td>
<td>day 2/135 (24 hour) day 1 every 3 weeks</td>
<td>[Schiller 2002 (55)]</td>
</tr>
<tr>
<td>Cisplatin/Docetaxel</td>
<td>75</td>
<td>day 1/75 day 1 every 3 weeks</td>
<td>[Fossella 2003 (28)]</td>
</tr>
<tr>
<td>Cisplatin/Docetaxel</td>
<td>75</td>
<td>day 1/75 day 1 every 3 weeks</td>
<td>[Schiller 2002 (55)]</td>
</tr>
<tr>
<td>Cisplatin/Gemcitabine</td>
<td>100</td>
<td>day 1/1000 days 1, 8, 15 every 4 weeks</td>
<td>[Schiller 2002 (55)]</td>
</tr>
</tbody>
</table>
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly?
- For PS2?
- Antiangiogenic?
- Other strategies

Recommendations:
- Cisplatin should be used in fit patients with PS 0–1 who have adequate organ function. (B, I)
- Cisplatin at ≥ 75 mg/m² q3wks should be used with 3rd-generation drugs. (B, V)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Platinum-based Doublets for NSCLC

North American Experience (SWOG + ECOG)

<table>
<thead>
<tr>
<th></th>
<th>SWOG</th>
<th>ECOG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>RO</td>
</tr>
<tr>
<td>Cisplatine + Vinorelbine</td>
<td>207</td>
<td>27%</td>
</tr>
<tr>
<td>Paclitaxel + Carboplatine</td>
<td>201</td>
<td>27%</td>
</tr>
<tr>
<td>Paclitaxel + Carboplatine</td>
<td>299</td>
<td>15%</td>
</tr>
<tr>
<td>Docetaxel + Cisplatine</td>
<td>304</td>
<td>17%</td>
</tr>
</tbody>
</table>

Source: Kelly et al., JCO 01.; Schiller et al., NEJM 02
Platinum-based Doublets for NSCLC

North American Experience (SWOG + ECOG)

![Graph showing survival by treatment group for stage IV NSCLC patients. The graph compares survival rates for different treatment regimens, including Cis/Paclitaxel, Cis/Gemcitabine, Cis/Docetaxel, and Carbo/Paclitaxel.](image)
Histological classification of NSCLC

<table>
<thead>
<tr>
<th>Classification</th>
<th>Characteristics¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-squamous</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma (AC)</td>
<td>• Malignant epithelial tumors with glandular differentiation</td>
</tr>
<tr>
<td>(30–50%)*</td>
<td>• IASLC classification of invasive AC:²</td>
</tr>
<tr>
<td></td>
<td>• Lepidic, acinar, papillary, micropapillary, or solid pattern predominant</td>
</tr>
<tr>
<td></td>
<td>• Variants: invasive mucinous AC, colloid, fetal, and enteric</td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>• Involves large cells (subtypes are giant cell, clear cell) with large nuclei</td>
</tr>
<tr>
<td>10%*</td>
<td>• No evidence of squamous or glandular differentiation</td>
</tr>
<tr>
<td>Squamous</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>• Involves cells of the squamous epithelium</td>
</tr>
<tr>
<td>30%†</td>
<td>• Two variants of clinicopathologic significance³</td>
</tr>
<tr>
<td></td>
<td>• Papillary variant</td>
</tr>
<tr>
<td></td>
<td>• Basaloid variant</td>
</tr>
</tbody>
</table>

*Image from www.surgical-pathology.com; †Image from http://www.lmp.ualberta.ca/resources/pathoimages/PC-S.htm; ³Other less common subtypes of non-squamous NSCLC include adenosquamous carcinoma and sarcomatoid carcinoma.³

Pemetrexed vs gemcitabine (+CDDP)

- Pemetrexed 500 mg/m² j 1
- Cisplatin 75 mg/m² j 1

- Adenocarcinoma + LCC → pemetrexed better

- SCC → Gemcitabine better
Pemetrexed vs gemcitabine (+CDDP)

- **Post-treatment**
 - 56.1% of gem/cis
 - Pem 13.4%
 - Gem 8.6%
 - Docetaxel 27.6%
 - EGFR TKI 22.5%
 - 52.6% of pem/cis
 - Pem 3.5%
 - Gem 16.7%
 - Docetaxel 25.4%
 - EGFR TKI 24.9%

Only 13.4% pts crossed over to pemetrexed!
Pemetrexed vs placebo after 4 cycles pemetrexed/cisplatin

PFS
- Pemetrexed: median = 4.4 mos (4.1 to 5.7 mos)
- Placebo: median = 2.8 mos (2.6 to 3.0 mos)
- Log-rank $P < .001$
- Unadjusted HR: 0.60 (0.50 to 0.73)

OS
- Pemetrexed: median = 13.9 mos (12.8 to 16.0 mos)
- Placebo: median = 11.0 mos (10.0 to 12.5 mos)
- Log-rank $P = 0.0195$
- Unadjusted HR: 0.78 (0.64 to 0.96)

OS maintenance pemetrexed: 13.9 months
Adjusted HR*, [CI 95%] 0.98 [0.85-1.14], P=0.81
OUTLINE
1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies

Recommendation:
There is no single platinum-based doublet standard chemotherapy. Pemetrexed-based doublets are restricted to non-squamous NSCLC. (A, I)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Optimal duration of chemotherapy

First line registration trials

- TAX 326, 2003
- ECOG, 2006
- Scagliotti, 2008
- AVAiL, 2009

PFS: 4 vs 6 cycles of cisplatin-based CT

<table>
<thead>
<tr>
<th>MST (mo)</th>
<th>6-cycle</th>
<th>4-cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.2 (5.7-6.7)</td>
<td>4.6 (4.4-4.8)</td>
</tr>
</tbody>
</table>

P = .001
HR = 0.63
(95% CI, 0.50 to 0.80)

Non progressive Patients after 2 cycles

Docetaxel; TAX 326
Bevacizumab; ECOG, AVAIL
Pemetrexed; Scagliotti
3-4 cycles vs. More

Overall survival

<table>
<thead>
<tr>
<th>Study (Year published)</th>
<th>Extended duration</th>
<th>Standard duration</th>
<th>Hazard ratio (fixed) 95% CI</th>
<th>Weight</th>
<th>Hazard ratio (fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zarogoulidis (1995)</td>
<td>36</td>
<td>38</td>
<td>0.71 (0.45 to 1.12)</td>
<td>3</td>
<td>0.71 (0.45 to 1.12)</td>
</tr>
<tr>
<td>Buccheri (1989)</td>
<td>38</td>
<td>36</td>
<td>0.73 (0.46 to 1.17)</td>
<td>2</td>
<td>0.73 (0.46 to 1.17)</td>
</tr>
<tr>
<td>Barata (2007)</td>
<td>110</td>
<td>110</td>
<td>0.77 (0.59 to 1.01)</td>
<td>7</td>
<td>0.77 (0.59 to 1.01)</td>
</tr>
<tr>
<td>Ciuleanu (2008)</td>
<td>441</td>
<td>222</td>
<td>0.79 (0.63 to 1.01)</td>
<td>10</td>
<td>0.79 (0.63 to 1.01)</td>
</tr>
<tr>
<td>Fidias (2007)</td>
<td>153</td>
<td>154</td>
<td>0.84 (0.65 to 1.08)</td>
<td>9</td>
<td>0.84 (0.65 to 1.08)</td>
</tr>
<tr>
<td>Brodowicz (2006)</td>
<td>138</td>
<td>68</td>
<td>0.84 (0.52 to 1.38)</td>
<td>2</td>
<td>0.84 (0.52 to 1.38)</td>
</tr>
<tr>
<td>Smith (2001)</td>
<td>153</td>
<td>155</td>
<td>0.88 (0.72 to 1.07)</td>
<td>15</td>
<td>0.88 (0.72 to 1.07)</td>
</tr>
<tr>
<td>Socinski (2002)</td>
<td>116</td>
<td>114</td>
<td>0.96 (0.82 to 1.12)</td>
<td>23</td>
<td>0.96 (0.82 to 1.12)</td>
</tr>
<tr>
<td>Belani (2003)</td>
<td>96</td>
<td>65</td>
<td>1.02 (0.66 to 1.57)</td>
<td>3</td>
<td>1.02 (0.66 to 1.57)</td>
</tr>
<tr>
<td>von Plessen (2006)</td>
<td>147</td>
<td>150</td>
<td>1.04 (0.82 to 1.32)</td>
<td>10</td>
<td>1.04 (0.82 to 1.32)</td>
</tr>
<tr>
<td>Westeel (2005)</td>
<td>91</td>
<td>90</td>
<td>1.08 (0.79 to 1.48)</td>
<td>6</td>
<td>1.08 (0.79 to 1.48)</td>
</tr>
<tr>
<td>Park (2007)</td>
<td>158</td>
<td>156</td>
<td>1.11 (0.82 to 1.48)</td>
<td>6</td>
<td>1.11 (0.82 to 1.48)</td>
</tr>
<tr>
<td>Tourani (1990)</td>
<td>12</td>
<td>11</td>
<td>1.26 (0.85 to 1.86)</td>
<td>4</td>
<td>1.26 (0.85 to 1.86)</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1,658</td>
<td>1,369</td>
<td>0.92 (0.85 to 0.99)</td>
<td>100</td>
<td>0.92 (0.85 to 0.99)</td>
</tr>
</tbody>
</table>

Test for heterogeneity: $\chi^2 = 12.68, df = 12 (P = .39), I^2 = 5\%$
Test for overall effect: $z = 2.18, P = .03$

PFS; HR = 0.75; 95% CI, 0.69 to 0.81; \(P =0.00001 \)

OS ; HR = 0.92; 95% CI, 0.86 to 0.99; \(P =0.03 \).

OS 3r generation vs old; (HR=0.70 interaction v 0.92 interaction; \(P =0.003 \).
Pemetrexed vs placebo after 4 cycles pemetrexed/cisplatin

PFS

- Pemetrexed: median = 4.4 mos (4.1 to 5.7 mos)
- Placebo: median = 2.8 mos (2.6 to 3.0 mos)
- Log-rank $P < .001$
- Unadjusted HR: 0.60 (0.50 to 0.73)

OS

- Pemetrexed: median = 13.9 mos (12.8 to 16.0 mos)
- Placebo: median = 11.0 mos (10.0 to 12.5 mos)
- Log-rank $P = .0195$
- Unadjusted HR: 0.78 (0.64 to 0.96)

OS maintenance pemetrexed: 13.9 months

Paz-Ares JCO 2013
Strategy made in Pharmas

Control ARM

- 6X GEM CIS
- 4X PEM CIS

Exp ARM

- 6X PEM CIS
- 4X PEM CIS then PEM
1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?

Recommendation:
- 4 cycles of chemotherapy is standard. (A, I)
- Continuation of a doublet regimen beyond 4 cycles may be considered in selected, non-progressing pts (C, I)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Miles Study: Results

![Survival probability graph showing different treatment outcomes over weeks.]

- **Vinorelbine**
- **Gemcitabine**
- **Vinorelbine + Gemcitabine**
- **Censored patients**

Gridelli J Natl Cancer Inst. 2003
Weekly paclitaxel combined with monthly carboplatin versus single agent therapy in patients aged 70 to 89: IFCT-0501

NSCLC Stage III-IV
Age 70-89 years
PS 0-2
n = 451

Random

Vinorelbine or Gemcitabine*

Carboplatin + paclitaxel

Erlotinib 150 mg/d

Phase III study
Stratification by centre, PS 0-1 vs. 2, age ≤80 vs. >80 and stage III vs. IV

*Choice of the center at the beginning of the study

Quoix, ASCO 2010
First-line Treatment

<table>
<thead>
<tr>
<th>ARM A</th>
<th>Weeks</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARM B</th>
<th>Weeks</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Choice of the center

- **V**: Vinorelbine: 30 mg/m²
- **G**: Gemcitabine: 1150 mg/m²
- **C**: Carboplatin: AUC 6
- **P**: Paclitaxel: 90 mg/m²

Quoix, ASCO 2010
Overall survival (Primary Objective)

MST = 10.3 months (95% CI 8.3-12.6)
MST = 6.2 months (95% CI 5.3-7.3)

HR = 0.64 (0.52-0.78); p = 0.00004

Quoix, The Lancet 2011
1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?

Recommendation:
- Platinum-based chemotherapy is preferred in fit elderly patients with PS 0–1 and adequate organ function.
- Single-agent third-generation drugs are preferred in unfit elderly patients. (B, I)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies
Meta-analysis Chemo. vs BSC Overall Survival

- N=2714
- 16 trials
- 9 with platin.
- 1 yr absolute benefit: 9% (20% to 29%).

HR=0.77 [0.71-0.83] p=0.0001
Survival by Patient Subgroup

<table>
<thead>
<tr>
<th></th>
<th>SC + CT</th>
<th>SC alone</th>
<th>Hazard Ratio (Fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS – Protocol Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>946/1034</td>
<td>904/969</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>298/310</td>
<td>279/284</td>
<td></td>
</tr>
<tr>
<td>PS – Exploratory Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (100-90%)</td>
<td>301/335</td>
<td>264/290</td>
<td></td>
</tr>
<tr>
<td>1 (80-70%)</td>
<td>645/699</td>
<td>640/679</td>
<td></td>
</tr>
<tr>
<td>2+ (≤60%)</td>
<td>298/310</td>
<td>279/284</td>
<td></td>
</tr>
</tbody>
</table>

Interaction p=0.536
Trend p=0.701

[NSCLC Meta-Analyses Collaborative Group JCO 08]
Pemetrexed vs. Pemetrexed-carboplatin in PS2 pts

PFS
- CP - 5.8 months (95% CI 4.7-6.9)
- P - 2.8 months (95% CI 2.5-3.2)
- HR = 0.46; 95% CI, 0.35 to 0.63
 - P< 0.001

OS (Primary endpoint)
- CP - 9.3 months (95% CI 7.2-11.2)
- P - 5.3 months (95% CI 4.1-6.5)
- HR = 0.62; 95% CI, 0.46 to 0.83
 - P= 0.001

4 cycles, n=201
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Antiangiogenic?
- Other strategies

Recommendation:
Platin-based combinations are preferred over single-agent chemotherapy. (B, I)
OUTLINE

1st line: platinum based CT

- When to start?
- Cisplatin or carboplatin?
- A best doublet?
- How many cycles?
- For elderly patients?
- For PS2?
- Anti-angiogenic?
- Other strategies
Bevacizumab

- Non squamous NSCLC
- Chemo Naive Stage IIIB-IV
- ECOG PS 0–1
- INR <1.5
- No history of bleeding or TEE
- No brain mets

Sandler NEJM 2006
Paclitaxel – Carboplatin - Bevacizumab

Population
Non squamous NSCLC
Chemo Naive Stage IIIB-IV

Paclitaxel (200mg/m², d1)
+ **Carboplatin (AUC 6, J1)**

 d1=d21

6 cycles

444 patients

Paclitaxel (200mg/m², d1)
+ **Carboplatin (AUC 6, d1)**
+ **Bevacizumab (15mg/kg, d1)**

 d1=d21

6 cycles + maintenance bvz

434 patients

Sandler NEJM 2006
Paclitaxel – Carboplatine - Bevacizumab

OS

Median: 12.5 mo vs 10.2 mo

<table>
<thead>
<tr>
<th></th>
<th>12 mo</th>
<th>24 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>51.9%</td>
<td>22.1%</td>
</tr>
<tr>
<td>PC</td>
<td>43.7%</td>
<td>16.9%</td>
</tr>
</tbody>
</table>

HR: 0.77 (0.65-0.93) p=0.007
Bevacizumab
Pooled Analysis for PFS

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of events / No. entered</th>
<th>Hazard ratio</th>
<th>HR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bevacizumab</td>
<td>Control</td>
<td>O-E</td>
</tr>
<tr>
<td>Dose 7.5 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVF-0757g 7.5</td>
<td>1128/1313</td>
<td>1099/1260</td>
<td>-150.1</td>
</tr>
<tr>
<td>AVAiL 7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose 15 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVF-0757g 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG 4599</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVAiL 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JO19907</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1128/1313</td>
<td>1099/1260</td>
<td>-150.1</td>
</tr>
</tbody>
</table>

- Non SCC NSCLC (toxic in SCC)
- 7.5 or 15 mg/kg q3w
- CT + bevacizumab then bevacizumab maintenance
AVAiL: Ph III Cis/Gem +/- Bevacizumab

+/- bevacizumab 7.5 mg/kg

- Placebo + CG (n = 347)
- Bevacizumab 7.5 mg/kg + CG (n = 345)

HR (95% CI) = 0.75 (0.62 to 0.91)
P = .003

+/- bevacizumab 15 mg/kg

- Placebo + CG (n = 347)
- Bevacizumab 15 mg/kg + CG (n = 351)

HR (95% CI) = 0.82 (0.68 to 0.98)
P = .03

No formal comparison of the doses
But does dose matter?
BO21015 (ABIGAIL)

Previously untreated, stage IIIB, IV non-squamous NSCLC (n=300)
Stratified by stage, gender, PS, chemotherapy

- Bevacizumab 7.5mg/kg q3w + up to six 21-day cycles of CG or CP (n=150)
- Bevacizumab 15mg/kg q3w + up to six 21-day cycles of CG or CP (n=150)

Primary endpoint:
exploration of correlation between candidate biomarkers and overall response rate to chemotherapy plus bevacizumab

Carboplatin/Gemcitabine (CG) or Carboplatin/Paclitaxel (CP)
Chemotherapy regimen was not randomly allocated but was chosen by the Investigator

Mok – J Thorac Oncol 2014
Only LOW baseline plasma VEGF-A correlated with PFS (p=0.002) and OS (p=0.004)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>n</th>
<th>Median PFS (months)</th>
<th>6-month PFS rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bev 15 mg/kg + CP</td>
<td>62</td>
<td>7.1</td>
<td>68</td>
</tr>
<tr>
<td>Bev 7.5 mg/kg + CP</td>
<td>66</td>
<td>6.3</td>
<td>52</td>
</tr>
<tr>
<td>Bev 15 mg/kg + CG</td>
<td>87</td>
<td>6.1</td>
<td>51</td>
</tr>
<tr>
<td>Bev 7.5 mg/kg + CG</td>
<td>88</td>
<td>6.8</td>
<td>63</td>
</tr>
</tbody>
</table>

7.5 mg/kg vs. 15 mg/kg, **HR 1.01**, 95% CI: 0.78-1.31

~60% of patients received CG
BRAIN: phase II trial of bevacizumab in patients with CNS metastases

Stage IV non-squamous NSCLC with untreated asymptomatic brain metastases (n=66)

Bevacizumab 15 mg/kg q3w + paclitaxel + carboplatin

6 cycles

n=66

Summary of response rates for primary tumours and metastases (% and 95% CI; n=67) for Pac + Carbo + Bev → Bev

First-line Pac + Carbo + Bev → Bev (n=67)

Median PFS/OS (months)

PFS: 6.7
OS: 16.0
AvaALL phase III: BVZ beyond PD

Primary endpoint: OS

Bev + platinum doublet therapy followed by Bev maintenance in advanced non-squamous NSCLC (N=485)

Investigator choice of SOC

Bev (7.5mg/kg or 15mg/kg i.v. q3w) + SOC1

Bev + SOC2

Bev + SOC3

No crossover allowed

1:1

PD1

SOC1

SOC2

SOC3

PD2

PD3

Bev + SOC
Median OS 11.86 months (95% CI: 10.22–13.67)

SOC
Median OS 10.22 months (95% CI: 8.61–11.93)

HR 0.84 (90% CI: 0.71–1.00)

p=0.1044

Courtesy of J. Remon

Bennouna – ASCO 2017
Negative phase III trials in NSCLC with anti-angiogenic agents (2000-2012)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mechanism of action</th>
<th>N° trials</th>
<th>N</th>
<th>End Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thalidomide</td>
<td>Anti-angiogenic</td>
<td>2</td>
<td>1267</td>
<td>OS</td>
</tr>
<tr>
<td>Cediranib</td>
<td>VEGFR TKI</td>
<td>2</td>
<td>602</td>
<td>OS</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>Multikinase TKI</td>
<td>3</td>
<td>2698</td>
<td>PFS/OS</td>
</tr>
<tr>
<td>AE-941</td>
<td>Anti-angiogenic</td>
<td>1</td>
<td>379</td>
<td>OS</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>Multikinase TKI</td>
<td>2</td>
<td>1830</td>
<td>OS</td>
</tr>
<tr>
<td>Motesanib</td>
<td>Multikinase TKI</td>
<td>1</td>
<td>1090</td>
<td>OS</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Multikinase TKI</td>
<td>1</td>
<td>960</td>
<td>OS</td>
</tr>
<tr>
<td>Aflibercet</td>
<td>VEGF/PIGF</td>
<td>1</td>
<td>913</td>
<td>OS</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11</td>
<td>9739</td>
<td></td>
</tr>
</tbody>
</table>
OUTLINE

1st line: platinum based CT

• When to start?
• Cisplatin or carboplatin?
• A best doublet?
• How many cycles?
• For elderly patients?
• For PS2?
• Anti-angiogenic?
• Other strategies
Cetuximab, meta-analysis

Cetuximab + CT improved OS (HR 0.88, p=0.009) PFS (HR 0.90, p=0.045) and RR (ORR 1.46, p< 0.001)

Greatest survival benefit in Squamous (HR 0.77, 95% CI 0.64–0.93)

Courtesy of J. Remon

Pujol - Lung Cancer 2014
SQUIRE trial: Necitumumab in Squamous

First-line Stage IV Squamous NSCLC^{3,4}
ECOG PS 0-2

Neci + Gem-Cis q3w (N=545)
Necitumumab 800 mg D1, D8
Gemcitabine 1250 mg/m², D1, D8
Cisplatin 75 mg/m², D1

Maximum of 6 cycles

Neci q3w
800 mg D1, D8

Gem-Cis q3w (N=548)
Gemcitabine 1250 mg/m², D1, D8
Cisplatin 75 mg/m², D1

Primary Endpoint: OS

Randomization stratified by: ECOG PS (0-1 vs. 2) and geographic region (North America, Europe, and Australia; vs. South America, South Africa, and India; vs. Eastern Asia)
SQUIRE trial: Necitumumab in Squamous

1y OS: 43%
2y OS: 20%

1y OS: 48%
2y OS: 17%

Courtesy of J. Remon

GUSTAVE ROUSSY
THÈME DU DIAPORAMA

Thatcher - Lancet Oncol 2015
Nab-paclitaxel in NSCLC

First-line Stage IV ECOG PS 0-2

N=1052

EndPoint: ORR

Nab-Paclitaxel 100 mg/m² QW CBDCA (AUC=6) Q3W

Maximum of 6 cycles

Paclitaxel 100 mg/m² QW CBDCA (AUC=6) Q3W

Socinski – JCO 2012 * Socinski – Ann Oncol 2013

Courtesy of J.Remon

Favors nab-PC
New standard?

<table>
<thead>
<tr>
<th></th>
<th>Nab-Paclitaxel</th>
<th>Nab-Paclitaxel Carboplatin</th>
<th>Paclitaxel CBDCA</th>
<th>Necitumumab Cis/Gem</th>
<th>Placebo Cis/Gem</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Squamous)</td>
<td>229</td>
<td>221</td>
<td>545</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>ORR (%)</td>
<td>41</td>
<td>24*</td>
<td>31</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>PFS (mo)</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>OS (mo)</td>
<td>10.7</td>
<td>9.5</td>
<td>11.5</td>
<td>9.9*</td>
<td></td>
</tr>
<tr>
<td>G3-5 AE (%)</td>
<td>70</td>
<td>68</td>
<td>72</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

* Statistically significant

Courtesy of J. Remon
First-Line IO + CT

Ph. II Pem. Carbo.

+/- PEMBROLIZUMAB

KEYNOTE 021

- Progression-Free Survival (%)
 - HR: 0.54 (0.33–0.88)
 - \(P = 0.0067 \)

Ph. III Pacli. Carbo. Bev.

+/- ATEZOLIZUMAB

IMPOWER 150

- Progression-Free Survival (%)
 - HR: 0.617 (95% CI: 0.517, 0.737)
 - \(P < 0.0001 \)

Press release - Jan, 16th 2018

Ph. III KEYNOTE 189

Positive for PFS and OS

All comers

Reck M, et al. ESMO IO Meeting 2017
1st line metastatic NSCLC

Treatment options

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Dose (mg/m²)</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemcitabine</td>
<td>1250</td>
<td>d 1, 8</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>80</td>
<td>d 1</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>25</td>
<td>d 1, 8, 15, 22</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>100</td>
<td>d 1, d1=d28</td>
</tr>
<tr>
<td>Pemetrexed</td>
<td>500</td>
<td>d1</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>75</td>
<td>d1, d1=d21</td>
</tr>
</tbody>
</table>

All histologies

Historical design, all histologies

Non squamous NSCLC

+/- bevacizumab if non SCC.
7.5 mg/kg or 15 mg/kg d1=d21
1st line metastatic NSCLC

Treatment options

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docetaxel</td>
<td>75 mg/m²</td>
<td>d 1</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>75 mg/m²</td>
<td>d 1</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>135 mg/m² (24 h)</td>
<td>d 1</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>75 mg/m²</td>
<td>d 2</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>225 mg/m² (3 h)</td>
<td>d 1</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>AUC 6</td>
<td>d 1</td>
</tr>
</tbody>
</table>

All histologies, induce alopecia

+/- bevacizumab if non SCC.
7.5 mg/kg or 15 mg/kg d1=d21
WE NEED NEW CHEMO!