ESMO SUMMIT AFRICA 2018

14 Years of progress in Prostate Cancer Standards of Care and new targets

Ronald de Wit
CONFLICT OF INTEREST DISCLOSURE

Sub-title

Sanofi
Roche
Merck
Lilly
14 years of progress in the Management of Prostate Cancer

- mCRPC; 2011 paradigm shift
 - Novel AR targeted agents
 - pre-chemotherapy

- mHSPC; recent paradigm shift
 - Docetaxel in addition to ADT
 - in men presenting with M1 disease

- mHSPC; latest shift addition of abiraterone to ADT
TAX 327 (Sanofi-Aventis)
Transatlantic phase 3 study 2004

Primary endpoint
OS
(N=1006)

Randomisation
1:1

Docetaxel 75 mg/m² q3 wks + Prednisone 5 mg 2dd

Docetaxel 30 mg/m² weekly 5 of 6 weeks + Prednisone 5 mg 2dd

Mitoxantrone 12 mg/m² q3 wks + Prednisone 5 mg 2dd
Improved median survival by 2.9 months: BUT

- as compared with alternative effective treatment (mitoxantrone)
- despite 30% crossover
- despite imperfect design
 (first PSA evaluation at 6 weeks)

Randomised Phase II study in Asiatic patients (n=229) (conducted as TAX327)

Docetaxel (75mg/m2)/pred vs M/pred; N= 229mCRPC
OS benefit 8 months (21.9 versus 13.7 months, HR 0.63)

Ti Zou et al, Plos one 2015
Docetaxel standard 1st line chemotherapy in mCRPC

- 9 Phase 3 trials of docetaxel + agent have failed to improve OS
- Phase 3 docetaxel +/- lenalidomide (MAINSAIL) worse OS in exp arm, ascribed to fewer cycles and more frequent docetaxel dose reductions*

- Posthoc analysis of MAINSAIL; in MVA number of docetaxel cycles had independent prognostic importance for OS; 8 was better than 6, 10 was better than 6 or 8* (in TAX 327 med N of cycles achieved 9.6)

- Number of cycles of docetaxel/dose in mCRPC is important

* Petrylak et al Lancet Onc 2015, ** de Morree et al JAMA Onc 2016
Phase III clinical trials in mCRPC

<table>
<thead>
<tr>
<th>Study</th>
<th>Agents</th>
<th>N</th>
<th>Indication</th>
<th>HR</th>
<th>Δ OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAX-327</td>
<td>Docetaxel/P vs mito/P</td>
<td>1006</td>
<td>mCRPC</td>
<td>0.76</td>
<td>+2.9</td>
</tr>
<tr>
<td>IMPACT</td>
<td>Sipuleucel-T vs pbo</td>
<td>512</td>
<td>mCRPC (pre-Doc)</td>
<td>0.78</td>
<td>+4.1</td>
</tr>
<tr>
<td>COU-AA-302</td>
<td>Abiraterone/P vs P</td>
<td>1088</td>
<td>mCRPC (pre-Doc)</td>
<td>0.81</td>
<td>+4.4</td>
</tr>
<tr>
<td>COU-AA-301</td>
<td>Abiraterone/P vs P</td>
<td>1195</td>
<td>mCRPC (post-Doc)</td>
<td>0.74</td>
<td>+4.6</td>
</tr>
<tr>
<td>PREVAIL</td>
<td>Enzalutamide vs pbo</td>
<td>1717</td>
<td>mCRPC (pre-Doc)</td>
<td>0.71</td>
<td>+4.0</td>
</tr>
<tr>
<td>AFFIRM</td>
<td>Enzalutamide vs pbo (or P)</td>
<td>1199</td>
<td>mCRPC (post-Doc)</td>
<td>0.63</td>
<td>+4.8</td>
</tr>
<tr>
<td>TROPIC</td>
<td>Cabazitaxel/P vs mito/P</td>
<td>755</td>
<td>mCRPC (post-Doc)</td>
<td>0.70</td>
<td>+2.4</td>
</tr>
<tr>
<td>ALSYMCPA</td>
<td>Radium-223 vs pbo</td>
<td>921</td>
<td>mCRPC</td>
<td>0.70</td>
<td>+2.8</td>
</tr>
</tbody>
</table>
Optimal choice and sequence of current agents undefined

- Most trials conducted in parallel pre-or post doce
- Optimal sequence of drugs undefined
- OS benefit likely smaller in subsequent lines of treatment; is there any benefit to be expected in 3rd or even 4th line?

Do not lose the opportunity for cabazitaxel

- Need for biomarkers for response on taxanes and AR targeted agents
Primary resistance to AR-targeted agents

Radiological PFS

Abiraterone\(^1\) (COU-AA-301)

- Primary resistance
 - 1 out of 3 patients

Enzalutamide\(^2\) (AFFIRM)

- Primary resistance
 - 1 out of 4 patients

Primary end-point of COU-AA-301 and AFFIRM was overall survival

PFS: progression-free survival
CTC characterization – AR-V7
< Hopkins Group> (Adna test platform)

AR Proteins

<table>
<thead>
<tr>
<th>AR (variant 1)</th>
<th>NTD</th>
<th>DBD</th>
<th>Hinge</th>
<th>LBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR3/AR-V7</td>
<td>NTD</td>
<td>DBD</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

Should patients with AR-V7\text{pos} CTCs be treated with AR-independent treatments? cabazitaxel?
AR-V7 in Cabazitaxel treated patients
Erasmus MC Group

Do AR-V7-positive patients benefit from cabazitaxel given its presumptive AR-independent mechanisms of action?

7.5 mL blood in EDTA tube before cycle 1 and 3
CellSearch enrichment, Lysis, RNA isolation, RT-qPCR

- CTC response
 - Decline to or stable <5 CTC
 - Overall 44%
 - N = 51
 - 50% versus 36%, P = 0.40
AR-V7 in Cabazitaxel treated patients
Erasmus MC Group

- No difference in PFS and OS
Optimal choice and sequence of current agents undefined

- Most trials conducted in parallel pre-or post doce
- Optimal sequence of drugs undefined
- OS benefit likely smaller in subsequent lines of treatment; is there any benefit to be expected in 3rd or even 4th line?
- Need for biomarkers for response on taxanes and AR targeted agents
- Cross resistance between agents
Cross resistance between taxanes and AR-targeted agents in vivo model of CRPC with acquired resistance to enzalutamide

Van Soest, de Wit et al. Eur Urol 2014
Impaired Efficacy of Docetaxel Post-Abiraterone?

[2-5] trials are retrospective studies

<table>
<thead>
<tr>
<th></th>
<th>VENICE(^1) n=612</th>
<th>De Bono(^2) n=35</th>
<th>Schweizer(^3) n=95</th>
<th>Azad(^4) n=86</th>
<th>De Bono(^5) (COU-AA-302) n=261</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC therapy line</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Visceral mets</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>↓ PSA ≥50%</td>
<td>63.5(%)</td>
<td>25.7(%)</td>
<td>63.0(%)</td>
<td>38.0(%)</td>
<td>35.0(%)</td>
</tr>
<tr>
<td>Median PSA-PFS (mths)</td>
<td>8.1</td>
<td>4.6</td>
<td>6.7</td>
<td>4.1</td>
<td>4.0</td>
</tr>
<tr>
<td>OS, median (mths)</td>
<td>21.2</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Cabazitaxel Remains Active in Patients Progressing With an AR-Targeted Agent

Progression-Free Survival

Overall Survival

Prospective, randomized phase 2 study of cabazitaxel ± budesonide

Poor response to abiraterone in patients progressing on enzalutamide?

<table>
<thead>
<tr>
<th></th>
<th>Loriot(^1) ((n=38))</th>
<th>Noonan(^2) ((n=30))</th>
<th>COU-AA-301(^3) ((n=797))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Enzalutamide</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Median PFS, mths</td>
<td>2.7</td>
<td>3.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Median OS, mths</td>
<td>7.2</td>
<td>11.8</td>
<td>14.8</td>
</tr>
<tr>
<td>↓PSA ≥50%*</td>
<td>8%</td>
<td>3%</td>
<td>29%</td>
</tr>
</tbody>
</table>

[1-2] trials are retrospective studies conducted in 38 and 30 patients, respectively
*Confirmed by a second value

OS: Overall survival; PFS: Progression-free survival
1st line taxane phase III study; FIRSTANA (ASCO 2016)

mCRPC and no prior chemotherapy
N = 1,168 pts

159 centers worldwide

CBZ 20 + PRED
Cabazitaxel 20 mg/m² Q3W
+ prednisone 10 mg/d
n = 389

CBZ 25 + PRED
Cabazitaxel 25 mg/m² Q3W
+ prednisone 10 mg/d
n = 388

DOC + PRED
Docetaxel 75 mg/m² Q3W
+ prednisone 10 mg/d
n = 391
FIRSTANA: Overall Survival

Median OS, months (95% CI)

- DOC + PRED: 24.3 (22.18–27.60)
- CBZ 20 + PRED: 24.5 (21.75–27.20)
- CBZ 25 + PRED: 25.2 (22.90–26.97)

CBZ 20 vs DOC
HR: 1.009 (0.85–1.197)
P = 0.9967

CBZ 25 vs DOC
HR: 0.97 (0.819–1.16)
P = 0.7574
FIRSTANA: Prior Treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>DOC + PRED N = 391</th>
<th>CBZ 20 + PRED N = 389</th>
<th>CBZ 25 + PRED N = 388</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal therapy, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 regimen</td>
<td>150 (38.4)</td>
<td>147 (37.8)</td>
<td>143 (36.9)</td>
</tr>
<tr>
<td>2 regimens</td>
<td>105 (26.9)</td>
<td>87 (22.4)</td>
<td>108 (27.8)</td>
</tr>
<tr>
<td>≥ 3 regimens</td>
<td>127 (32.5)</td>
<td>145 (37.3)</td>
<td>132 (34.0)</td>
</tr>
<tr>
<td>Radical prostatectomy, n (%)</td>
<td>85 (21.7)</td>
<td>99 (25.4)</td>
<td>78 (20.1)</td>
</tr>
<tr>
<td>Radiation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curative</td>
<td>133 (34.0)</td>
<td>150 (38.6)</td>
<td>120 (30.9)</td>
</tr>
<tr>
<td>Palliative</td>
<td>62 (15.9)</td>
<td>73 (18.8)</td>
<td>74 (19.1)</td>
</tr>
<tr>
<td>Next-generation AR-targeted agents, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzalutamide</td>
<td>3 (0.8)</td>
<td>4 (1.0)</td>
<td>3 (0.8)</td>
</tr>
<tr>
<td>Abiraterone acetate</td>
<td>8 (2.0)</td>
<td>2 (0.5)</td>
<td>3 (0.8)</td>
</tr>
</tbody>
</table>
1st line taxane in mCRPC

- Cabazitaxel 20mg and 25mg show a similar OS benefit as Docetaxel in a non resistant population (<2% of patients treated with prior ABI or ENZA)

- 1st line efficacy of Cabazitaxel as compared to Docetaxel in patients progressing after ABI or ENZA is not known

If there is no benefit after 3 cycles of doce in post-abi/enza setting consider to switch to cabazitaxel (20mg /m2)
14 years of progress in the Management of Prostate Cancer

- **mCRPC;** 2011 paradigm shift
 - novel AR targeted agents
 - pre-chemotherapy

- **mHSPC;** recent paradigm shift
 - docetaxel in addition to ADT
 - in men presenting with M1 disease

- **mHSPC;** latest shift addition of abiraterone to ADT
Combination of ADT and taxanes

CHAARTED (M1)

Phase III randomized trial in 790 men with metastastic hormone-naïve PCa

STAMPEDE (M0/M1)

Phase III randomized trial in M0/M1 patients with hormone-naïve PCa

DOC: Docetaxel

2James N et al. Lancet. 2015, December
GETUG 15 in metastatic hormone-sensitive PCa
Activity of subsequent therapies

Modest PSA response and PFS in patients initially treated with ADT+DOC and rechallenged with DOC at disease progression

Lavaud P et al. J Clin Oncol 2016; 34 (suppl); abstract 5080
Short response to first ADT may predict poor response to Enzalutamide (Oudard, ESMO discussant 2017)

Retrospective cohort of 173 patients, including 57 treated with enzalutamide in AFFIRM trial

PSA decrease ≥ 50%

- P<0.001
- 8% < 12 mo
- 58% ≥ 12 mo

TTCRPC: time to castration resistance; **PFS:** progression-free survival

PFS

- TTCRPC ≥12 months
- TTCRPC <12 months
- HR: 0.58 (95% CI: 0.42-0.82)
- Median PFS: 5.8 mo vs 2.8 mo
- Log-rank P =0.002

OS in Patients who Discontinued Prior Docetaxel due to Disease Progression

- Median OS was 13.8 months in the cabazitaxel/prednisone group vs. 10.9 months in the mitoxantrone /prednisone group
 - HR 0.70 (0.57-0.87)

![Graph showing survival probabilities and hazard ratio](image-url)
Post CHAARTED/STAMPEDE (doce) treatment

- For pts > 12 months response duration on ADT, reasonable option AR-targeted therapy (subsequent line would be cabazitaxel)

- For pts < 12 months response duration on ADT most logical choice would appear cabazitaxel
Study design of LATITUDE

Patients
- Newly diagnosed adult men with high-risk mHNPC

Stratification factors
- Presence of visceral disease (yes/no)
- ECOG PS (0, 1 vs 2)

Randomized 1:1

ADT + Abiraterone acetate 1000 mg QD + Prednisone 5 mg QD (n = 597)

ADT + placebos (n = 602)

Efficacy end points
Co-primary:
- OS
- rPFS
Secondary: time to
- pain progression
- PSA progression
- next symptomatic skeletal event
- chemotherapy
- subsequent PC therapy

High-risk defined as meeting at least 2 of 3 high-risk criteria:
- Gleason score of ≥ 8
- Presence of ≥ 3 lesions on bone scan
- Presence of measurable visceral lesion

Presented by: Karim Fizazi
LATITUDE: Co-primary End Points

38% Risk Reduction for Death

53% Risk Reduction for rPFS

STAMPEDE – ABI+ADT vs ADT in newly diagnosed locally advanced or metastatic Pca (ASCO 2017)

Phase 3 randomized trial in newly diagnosed M0/M1 prostate cancer.
Primary end-point: OS
FFS: failure free survival

James ND et al. NEJM 2017; 377: 338-51
In 2018 Multiple Choices and Sequences

- mHSPC early taxane /late taxane
- mHSPC early abi/late abi/enza
- mCRPC abi/enza pre- or post taxane
- mCRPC Radium 223 pre- or post taxane

- Even after 4 lines considerable number of mCRPC patients wish to receive systemic therapies
- New avenues:
 - Immunotherapy
 - Molecular targeted therapies
Precision medicine in mCRPC

- Molecular targeted treatment is based on pathways
- Best known example in PC is DNA repair deficiency as a target for PARP inhibitors (10-15% of PC pts)*

- Requires Biopsy material from metastatic lesion
- or Liquid Biopsy (CTCs or ctDNA)

Antitumor Activity of Olaparib and Association with Defects in DNA-Repair Genes, According to Biomarker Status.
Gene Mutations and splice variants

- Enriched in metastatic setting, especially in pretreated patients
 - Biopsies cumbersome, sometimes impossible
 - Invasive
- Difficult to repeat during treatment
CTCs vs cell-free tumor DNA (ctDNA)

<table>
<thead>
<tr>
<th>CTCs</th>
<th>cfDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact tumor cell in the circulation</td>
<td>cell-free in the circulation</td>
</tr>
<tr>
<td>DNA, RNA and protein</td>
<td>DNA only</td>
</tr>
<tr>
<td>Detectable in 30-40% of mCRPC patients</td>
<td>Detectable in 60% of mCRPC patients</td>
</tr>
<tr>
<td>More complex processing (EpCAM-based enrichment)</td>
<td>Easy processing (plasma isolation)</td>
</tr>
</tbody>
</table>
PTEN is a tumor suppressor protein

Negative regulator of PI3Kinase

PTEN loss results in activation of the PI3K/AKT/mTOR pathway causing promotion of tumor growth, cell survival and resistance to therapy

Cross-talk between AR and PI3K-AKT signaling, rationale for concurrent inhibition of both pathways

Phase 1 study in biopsy proven (fresh/archived material) PTEN deficient mCRPC patients
Phase I Study of GSK2636771, a Phosphoinositide 3-kinase (PI3K)β Inhibitor with Enzalutamide in mCRPC pts Failing Enzalutamide

Rescigno et al (RMH)

- GSK2636771 is a selective inhibitor of PI3Kβ that inhibits the growth of PTEN-deficient tumor cells in preclinical models.

Primary objectives

<table>
<thead>
<tr>
<th>Safety:</th>
<th>Efficacy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assess safety and tolerability</td>
<td>• Non-disease progression at 12 weeks</td>
</tr>
<tr>
<td>• Determine recommended combination dose for Phase II trials</td>
<td></td>
</tr>
</tbody>
</table>

Secondary objectives

- Evaluate the clinical activity of oral GSK2636771 + enzalutamide in the treatment of PTEN-deficient mCRPC
- Determine the effect of GSK2636771 on PK characteristics of enzalutamide
- Determine the effect of enzalutamide on PK characteristics of GSK2636771

Inclusion Criteria

- ≥18 years old, male
- Diagnosed with mCRPC
- Tested PTEN-deficient by IHC
- Testosterone ≤50 ng/dL
- ECOG: 0 or 1
- Progression on enzalutamide
- Has not been without prior enzalutamide for >30 days

Part 1: Dose Escalation

<table>
<thead>
<tr>
<th>Cohort 1</th>
<th>Cohort 1</th>
<th>Cohort 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzalutamide (160 mg) + GSK2636771</td>
<td>200 mg</td>
<td>300 mg</td>
</tr>
</tbody>
</table>

Part 2: Dose Expansion

Up to 20 subjects recruited per dose level

Primary Outcomes

- Safety and tolerability
- Non-disease progression at 12 weeks
GSK2636771 (PI3Kβ Inhibitor) with Enzalutamide in mCRPC; 28 patients enrolled

- Cmax and AUC of GSK2636771 and enzalutamide in combo were comparable with monotherapy
- No safety issues
- One PR (200 mg GSK2636771) and continued treatment for 35 weeks
Gene expression profiling
ESMO 2015 (Vancouver Group)

- Remaining RNA from CellSearch-enriched CTCs
- RT-qPCR
 - Panel of prostate-associated genes
 - CTC-specific
- Predict treatment response/resistance?
 - Cabazitaxel
 - Abiraterone/Enzalutamide
- Changes in gene expression during cabazitaxel?

Genomic analysis of ctDNA in plasma of mCRPC patients

Waterfall plot of maximum % PSA change from baseline stratified by AR gene status during treatment with enzalutamide

Azad et al. (Vancouver Group) Clin Cancer Res 2015
CIRCUS study <ErasmusMC Group>

CPCT-02 study
- Biopsy
- DNA isolation
- DNA sequencing
- SV selection

CIRCUS study
- Temporal measurements
- Plasma
- Urine
- ctDNA isolation
- dPCR
- Therapy response

CRPC patient

PSMA scan
Solid Cancers; mutational load

Alexandrov et al Nature 2013
†Membranous PD-L1 expression in ≥1% of tumor or stromal cells using a prototype immunohistochemistry assay and 22C3 antibody (Merck). § Clinically stable patients were allowed to remain on pembrolizumab until progressive disease was confirmed on a second scan performed ≥4 weeks later. Patients who experienced progression after discontinuing pembrolizumab were eligible for up to 1 year of additional treatment if no other anticancer therapy was received.

†Response assessment: Every 8 weeks for the first 6 months; every 12 weeks thereafter
Primary end points: ORR per RECIST v1.1 and safety
Secondary end points: PFS, OS, duration of response
KN365 - Prostate Umbrella Trial to Study Combinations with Pembrolizumab

Goal:
- Signal generation: test and identify combinations with additive or synergistic effect
- Broaden patient population (test without regard to PDL-1 status, improve BMx)
- Adaptive design to test promising combinations

Stage IV mCRPC
- RECIST Measurable or Non-measurable disease
- Enroll without respect to PDL-1 status
- Primary Endpoint PSA response
 - Evaluate: Serum PDL1, Prostate PDL1 NS, NGS

1st wave of combinations
- A: Pembro + Olaparib post docetaxel
- B: Pembro+ docetaxel post abi or enza
- C: Pembro + enzalutamide post Abi

2nd wave of combinations
- D: Pembro +
- E: Pembro +
- F: Pembro +

N=50-70/cohort
Conclusions

- Docetaxel remains important taxane in mCRPC, efficacy likely impaired in post AR treatment setting
- Cross-resistance between AR–targeted treatments, do not loose the opportunity to use cabazixel
- Benefit of docetaxel in addition to ADT is robust in setting of mHSPC, evidence strongest in high-volume disease setting
- Benefit of adding abiraterone in addition to ADT in mHSPC, next talk….
Conclusions

- ctDNA and biopsies (and CTCs) allow to identify genomic aberrations and may play an increasing role in precision medicine.
- To date, findings need to be prospectively validated, with the exception of DNA repair deficiency as a target for PARP inhibitors.

- Current aberrations of interest;
 - RB (cell cycle)
 - BRCA/ATM (DNA repair)
 - PTEN (PI3K/AKT signalling)
 - AR mutations and splice variants (testosterone)
ACKNOWLEDGEMENTS

Laboratory of Translational Cancer Genomics and Proteomics

Wendy Onstenk
John Foekens
Jaco Kraan
John Martens
Blanca Mostert
Anieta Sieuwerts
Stefan Sleijfer

Department of Medical Oncology/ Urology, Erasmus MC

Martijn Lolkema
Robert van Soest
Ron Mathijssen
Wytske van Weerden
Guido Jenster
Ronald de Wit

All recruiting physicians and research nurses

Patients and their families