Systemic Therapy for Locally Advanced Breast Cancer

Soo-Chin Lee
Head & Senior Consultant
Department of Haematology-Oncology
National University Cancer Institute, Singapore

Senior Principal Investigator
Cancer Science Institute, Singapore
Neoadjuvant Systemic Therapy in Locally Advanced Breast Cancer

INDICATIONS

Operable but unable to conserve breast (need mastectomy)

Convert inoperable to operable

Convert non-conservable to conservable

Test biology of tumor

Possibility to add agent(s) to conventional chemotherapy to improve pCR

Non-\(pCR \)

Identifies poor risk patients who may benefit from additional adjuvant therapy
Neoadjuvant Chemotherapy Schema

Neoadjuvant Chemotherapy 3-6 months

Definitive Breast Cancer Surgery

+/- Adjuvant chemotherapy

+/- Other Adjuvant Therapies

Clinical response monitored at every cycle

Pathological Response
Outcomes from Neoadjuvant Chemotherapy

Clinical response rates 60-90%
Breast conservation rates 40-70%
Pathological complete response rates (pCR) 10-50% *(has prognostic relevance)*

Risk of clinical progression in <5%
- Operable → Non-operable
- Locally advanced → Metastatic

Failure to achieve clinical response (CR/PR) after 6-12 weeks of neoadjuvant chemotherapy is associated with low probability of pCR

Smith et al. JCO 2002, 20: 1456-66
pCR is Prognostic in most Breast Cancer Subtypes except for Luminal A

Prognostic in Luminal B, HER2+, and TNBC

Not prognostic in Luminal A

N=6377
7 randomized trials

pCR is the parameter to improve (surrogate for long-term survival)

Improving pCR rate

Adding Taxanes to Anthracyclines; 6 months vs 3 months

3 months neoadjuvant chemotherapy (All subtypes) (anthracyclines)

<table>
<thead>
<tr>
<th>Study</th>
<th>pCR Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B18</td>
<td>13%</td>
</tr>
<tr>
<td>n=2309</td>
<td></td>
</tr>
<tr>
<td>AC x 4 (60/600)</td>
<td>Surgery upfront</td>
</tr>
</tbody>
</table>

6 months neoadjuvant chemotherapy (All subtypes) (sequential anthracyclines and taxanes)

<table>
<thead>
<tr>
<th>Study</th>
<th>pCR Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSABP B27</td>
<td>14%</td>
</tr>
<tr>
<td>n=1609</td>
<td></td>
</tr>
<tr>
<td>AC x 4 (60/600)</td>
<td>AC x 4 (60/600)</td>
</tr>
<tr>
<td>Neoadjuvant</td>
<td>Docetaxel (100) x 4</td>
</tr>
</tbody>
</table>

NSABP B18; JCO 2004, 24: 2019-27

NSABP B27; Bear et al. JCO 2006; 24: 2019-27
Improving pCR rate in special subtypes

HER2+ breast cancers
Improving pCR rate in HER2 Positive Breast Cancers

Adding Trastuzumab to Chemotherapy

Noah
N=235

- ATx3 → Tx4 → CMFx3
- ATx3 → Tx4 → CMFx3
- Trastuzumab

pCR
19%
38%

Geparquattro
N=445

- ECx4 → docetaxel+/− capecitabine x4
- ECx4 → docetaxel+/− capecitabine x4
- Trastuzumab

16%
32%

Gianni et al. Lancet 2010; 375: 377-84
Pierga et al. Breast Cancer Research and Treatment 2010, 122(2P 429-37
Improving pCR rate in HER2 Positive Breast Cancers

Dual Anti-HER2 Blockade + Chemotherapy

NeoSPHERE (neoadjuvant)

N=417 (HER2+)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab + Docetaxel</td>
<td>29%</td>
</tr>
<tr>
<td>Pertuzumab + Docetaxel</td>
<td>24%</td>
</tr>
<tr>
<td>Trastuzumab + Pertuzumab</td>
<td>46%</td>
</tr>
<tr>
<td>Trastuzumab + Pertuzumab</td>
<td>17%</td>
</tr>
</tbody>
</table>

P=0.01

Pertuzumab is synergistic with trastuzumab and is a first-in-class dimerization inhibitor.

Improving pCR rate in special subtypes

TNBC (adding agents to anthracyclines/taxanes)

- chemotherapy (carboplatin)
- biological agents (PARP inhibitors, Immune checkpoint inhibitors)
Adding Platinums to Neoadjuvant Anthracyclines/Taxanes to improve pCR in TNBC

GEPARSIXTO; n=315 TNBC (Phase II randomized)

- Paclitaxel/Liposomal dox x 18 weeks
- Carboplatin x 18 weeks (AUC 1.5-2)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel/Liposomal dox x 18 weeks</td>
<td>37%</td>
</tr>
<tr>
<td>Carboplatin x 18 weeks (AUC 1.5-2)</td>
<td>53%</td>
</tr>
</tbody>
</table>

\[\Delta 17\% \]

\[\Delta 17\% \]

\[P=0.005 \]

CALGB 40603; n=443 TNBC (Phase II randomized; 2x2 factorial)

- Paclitaxel x 12 weeks
- Carboplatin 3-weekly x 4 (AUC 6)
- ddAC x 4 (60/600)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel x 12 weeks</td>
<td>41%</td>
</tr>
<tr>
<td>Carboplatin 3-weekly x 4 (AUC 6)</td>
<td>54%</td>
</tr>
</tbody>
</table>

\[\Delta 13\% \]

\[\Delta 13\% \]

\[P=0.029 \]

Carboplatin added to Neoadjuvant Chemotherapy in TNBC

Meta-analysis of TNBC neoadjuvant trials
5 studies, n=988 TNBCs
Carboplatin vs no carboplatin

Odds Ratio of improving pCR

- **OR 1.80**
- **CI 1.39-2.32**
- **p<0.001**

More toxicities
G3,4 thrombocytopenia
G3,4 anemia

More dose discontinuations

May be considered in *selected patients* (higher risk, younger, fitter), platinum sensitive

Cao et al. PLOS One 2015; 10(12): e0145442
BRCA mutant breast cancers are exquisitely sensitive to platinums

Neoadjuvant **single agent cisplatin** 75mg/m², 3 weekly x 4

<table>
<thead>
<tr>
<th>Tumor types (BRCA1+ mutants)</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All tumors (n=107)</td>
<td>61%</td>
</tr>
<tr>
<td>TNBC (n=80)</td>
<td>61%</td>
</tr>
<tr>
<td>ER+ (n=16)</td>
<td>56%</td>
</tr>
</tbody>
</table>

Neoadjuvant **single agent cisplatin x 4** in unselected TNBC (n=28): **pCR 22%**

Neoadjuvant **dose dense AC x 4 followed by taxanes** in **BRCA1/2+ TNBC** (n=37): **pCR 67%**

Ongoing neoadjuvant study

BRCA1/2+ tumors (n=166)

Silver et al. JCO 2010; 28(7): 1145-53; Clinical Trials.gov: NCT01670500
Addition of Bevacizumab to Neoadjuvant Chemotherapy in TNBC

Anthracyclines + Taxanes backbone

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>TNBC pCR rates</th>
</tr>
</thead>
</table>
| **GEPARQUINTO** | EC x 4 (90/600) | Docetaxel (100) x 4 | 28%
| | | | $\Delta 11\%$ |
| | EC x 4 (90/600) | Docetaxel (100) x 4 | 39%
| | | | $p=0.003$ |
| | Bevacizumab 3 weekly x 8 | | |
| **ARTemis** | Docetaxel (100) x 3 | FEC x 3 (500/50/500) | 31%
| (800 HER2-) | | | $\Delta 14\%$ |
| | Docetaxel (100) x 3 | FEC x 3 (500/50/500) | 45%
| | | | P: not reported |
| | Bevacizumab 3 weekly x 4 | | |

Anthracyclines + Taxanes + additional chemotherapy backbone

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>TNBC pCR rates</th>
</tr>
</thead>
</table>
| **NSABP-B40** | Docetaxel x 4 +/- gem or cape| AC x 4 (60/600) | 47%
| (2x3 factorial) | | | $\Delta 5\%$ |
| | | | $P=0.34$ |
| | Docetaxel x 4 +/- gem or cape| AC x 4 (60/600) | 52%
| | | | |
| | Bevacizumab 3 weekly x 6 | | |
| **CALGB 40603** | Paclitaxel x 12W +/- carbo | ddAC x 4 | 44%
| (2x2 factorial) | | | $\Delta 8\%$ |
| | Paclitaxel x 12W +/- carbo | ddAC x 4 | 52%
| | | | $P=0.057$ |
| | Bevacizumab 2 weekly x 9 | | |

Bevacizumab added to Chemotherapy in TNBC

Neoadjuvant and Adjuvant

Meta-analysis of neoadjuvant therapy in TNBC
3 studies, n=1586 TNBCs (exclude ARTemis)

Bevacizumab vs no bevacizumab

Meta-analysis of carboplatin vs no carboplatin: OR 1.80 (5 trials, 988 patients)

BEATRICE (Adjuvant bevacizumab; Phase III randomized)
N=2591 TNBC; Node negative 63%, Asian ~24%

Bevacizumab x 1 year

Cao et al. PLOS One 2015; 10(12): e0145442; Cameron et al. Lancet Oncol 2013, 14: 933-42
Biological Agent + Neoadjuvant Chemotherapy in TNBC

PARP Inhibitor; Immune Checkpoint Inhibitor

I-SPY2; phase II adaptive randomized

N=44 HER2- (n=21 TNBC)
- Paclitaxel x 12 weeks
- AC x 4 (60/600)

pCR in TNBC
- 26% (19% for HER2-)

N=72 HER2- (n=39 TNBC)
- Paclitaxel x 12 weeks
- AC x 4 (60/600)
- Veliparib + carboplatin

51% (14% for HER2-)

88% predicted probability of phase III success in TNBC

N=180 HER2-
- Paclitaxel x 12 weeks
- AC x 4 (60/600)

pCR in TNBC
- 20% (13% for HER2-)

N=69 HER2- (n=29 TNBC)
- Paclitaxel x 12 weeks
- AC x 4 (60/600)
- Pembrolizumab

60% (34% for HER2-)

>99% predicted probability of phase III success in TNBC

Promising preliminary data but small sample size

Rugo et al. NEJM 2016, 375(1): 23-34; Rugo et al. NEJM June 2017
Probability of achieving pCR from Neoadjuvant Chemotherapy in different Breast Cancer Subtypes

<table>
<thead>
<tr>
<th>Subtypes</th>
<th>Treatment Regimen</th>
<th>pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All subtypes</td>
<td>Anthracyclines combination (3 months)</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>Sequential anthracyclines and taxanes (6 months)</td>
<td>26%</td>
</tr>
<tr>
<td>HER2+</td>
<td>Single agent taxanes + Trastuzumab</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Single agent taxanes + Trastuzumab + Pertuzumab</td>
<td>50%</td>
</tr>
<tr>
<td>TNBC</td>
<td>Sequential anthracyclines and taxanes (6 months)</td>
<td>30-35%</td>
</tr>
<tr>
<td></td>
<td>Anthracyclines and taxanes + carboplatin</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Anthracyclines + taxanes + bevacizumab</td>
<td>45-50%</td>
</tr>
<tr>
<td></td>
<td>Anthracyclines + taxanes + carboplatin + veliparib</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Anthracyclines + taxanes + pembrolizumab</td>
<td>60%</td>
</tr>
<tr>
<td>BRCA1/2+</td>
<td>Sequential anthracyclines and taxanes (6 months)</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>Single agent cisplatin</td>
<td>60%</td>
</tr>
</tbody>
</table>

* Fewer than 50 patients in the experimental arm
CREATE-X; Phase III randomized
N=910 HER2- stage I-III breast cancer (n=286 TNBC)
Non-pCR after neoadjuvant chemotherapy (chest wall/skin infiltration ~15%)
- 81% sequential anthracyclines-taxanes; - 14% concurrent anthracyclines-taxanes

Capecitabine 1250mg/m² days 1-14, every 21 days, x 6 or 8 cycles

Masuda et al. NEJM 2017; 376: 2147-59
Systemic Therapy in Locally Advanced Breast Cancer

Effectively *downstages* tumor to facilitate surgery

Provides *prognostic information* (pCR) and *tests* tumor biology

Tumor characteristics influence drug choice:
- **Anti-HER2 agents** (trastuzumab +/- pertuzumab) in **HER2+** cancers
- **Platinums**: some **TNBCs, BRCA+** tumors
- Some **biological agents promising in TNBC** (*bevacizumab, PARP inhibitors, immune checkpoint inhibitors*)

Adjuvant capecitabine may be considered in **HER2-** (particularly **TNBC**) non-pCR patients