Immunotherapy in Ovarian Cancer

Kunle Odunsi, M.D., Ph.D.¹,²,³
Cancer Center Deputy Director

Departments of Gynecologic Oncology¹, Immunology², Center for Immunotherapy³

Roswell Park Cancer Institute
Buffalo, NY
I have no financial relationships to disclose.
Objectives

• How immunotherapy approaches may expand shared tumor antigen specific T cells.

• Highlight the role of vaccines, PD-1/PD-L1 and other immune checkpoints in ovarian cancer.

• **Beyond PD-1/PD-L1**: highlight how amino acid metabolism (tryptophan) represents a potent mechanism of immune escape in ovarian cancer.

• Adoptive T cell immunotherapy
Discriminating “self” from “non-self”: a fundamental feature of the immune system

1. Confront the external threat of infectious pathogens
 - Create a diverse repertoire of TCRs (via V(D)J recombination):
 - foreign pathogens/epitopes
 - endogenously expressed self epitopes (shared tumor antigens).

2. Avoid immunological self destruction (*horror autotoxicus*)
 - Clonal deletion of αβ T cells specific for self (Burnet, 1959).
 - Implication:

 T cells recognizing self antigens should be deleted in the thymus, which conceptually should render shared antigen-based approaches ineffective.
Prevailing dogma: central tolerance is a barrier for “self antigens” in immunotherapy

Adapted from Hacohen et al Cancer Immunol Res 2013
Evidence for inefficient deletion of “self” reactive CD8⁺ T cells

Clonal Deletion Prunes but Does Not Eliminate Self-Specific αβ CD8⁺ T Lymphocytes

Wong Yu,¹,² Ning Jiang,³,⁸ Peter J.R. Ebert,¹ Brian A. Kidd,¹,⁹ Sabina Müller,⁴ Peder J. Lund,¹ Jeremy Juang,¹ Keishi Adachi,¹,¹⁰ Tiffany Tse,¹ Michael E. Birnbaum,¹ Evan W. Newell,¹,¹¹ Darrell M. Wilson,⁵ Gijsbert M. Grotenbreg,⁶,¹² Salvatore Valitutti,⁴ Stephen R. Quake,³,⁷ and Mark M. Davis¹,⁷,*
Clonal deletion prunes T cell repertoire without eliminating self-reactive T cells

Expand and/or rescue function via:
- vaccination
- checkpoint blockade
- immunomodulation
- adoptive cell therapy
- oncolytic virotherapy

to self tumor antigens…

Kitz et al. Immunity 2015
Improved outcome in ovarian cancer patients with elevated CD8+ TIL levels: Evidence of Immune Recognition

Zhang et al. NEJM 2003;348:203
(Coukos)

Sato et al. PNAS 2005;102:18538
(Odunsi)
Can immune responses be generated against shared “self” antigens vs mutational antigens?

Shared self antigen
- Differentiation antigens: tyrosinase, MART-1, NY-BR
- Cancer Germline (CG or CT) antigens: MAGE family, NY-ESO-1
- Over-amplified antigens: HER2/neu, WT1, CD20
- Stemness antigens: SOX2, OCT4

Neoantigen
- Mutational antigens: B-raf, p53

Foreign antigen
- Viral antigens: HPV-derived E6 and E7
Potential contribution of NY-ESO-1 specific CD8\(^{+}\) T cells

Expression limited to germ cells and cancer cells; immunogenic tumor antigen

- Focal, 1+ to 4+
- Humoral response: 30%

Odunsi et al Cancer Res 2003
Can immune responses be generated against shared “self” antigens? NY-ESO-1 vaccine trials at RPCI

<table>
<thead>
<tr>
<th>Protocol</th>
<th>clinicaltrials.gov</th>
<th>NY-ESO-1 targeted intervention</th>
<th>Patient population</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 02-28</td>
<td>N/A (LUD02-011)</td>
<td>dual MHC I/II specific long peptide + IFA adjuvant</td>
<td>ovarian (n=18)</td>
</tr>
<tr>
<td>I 13303</td>
<td>NCT00112957</td>
<td>rVaccinia prime →rFowlpox boost</td>
<td>ovarian (n=22)</td>
</tr>
<tr>
<td>I 125207</td>
<td>NCT00803569</td>
<td>rCanary pox/TRICOM + GM-CSF</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 127008</td>
<td>NCT01673217</td>
<td>recombinant protein + IFA + GM-CSF + decitabine</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 178610</td>
<td>NCT00106158</td>
<td>recombinant protein + CHP adjuvant</td>
<td>solid tumors (n=20)</td>
</tr>
<tr>
<td>PH 244813</td>
<td>NCT02015416</td>
<td>recombinant protein + GLAAS adjuvant</td>
<td>solid tumors (n=12)</td>
</tr>
<tr>
<td>I 199911</td>
<td>NCT01536054</td>
<td>rCanary pox/TRICOM + rapamycin</td>
<td>ovarian (n=21)</td>
</tr>
<tr>
<td>I 191511</td>
<td>NCT01522820</td>
<td>DC vaccine + rapamycin (cell therapy)</td>
<td>solid tumors (n=20)</td>
</tr>
<tr>
<td>I 248613</td>
<td>NCT02166905</td>
<td>DEC205-NY-ESO-1 complex + IDO inhibitor</td>
<td>ovarian (n=50)</td>
</tr>
<tr>
<td>I 277115</td>
<td>in process</td>
<td>recombinant protein + MIS416 adjuvant + rapamycin</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 288216</td>
<td>in process</td>
<td>DEC205-NY-ESO-1 + guadecitabine + atezolizumab</td>
<td>ovarian (n=66)</td>
</tr>
</tbody>
</table>
NY-ESO-1 vaccine trials at RPCI

<table>
<thead>
<tr>
<th>Protocol</th>
<th>clinicaltrials.gov</th>
<th>NY-ESO-1 targeted intervention</th>
<th>Patient population</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 02-28</td>
<td>N/A (LUD02-011)</td>
<td>dual MHC I/II specific long peptide + IFA adjuvant</td>
<td>ovarian (n=18)</td>
</tr>
<tr>
<td>I 13303</td>
<td>NCT00112957</td>
<td>rVaccinia prime → rFowlpox boost</td>
<td>ovarian (n=22)</td>
</tr>
<tr>
<td>I 125207</td>
<td>NCT00803569</td>
<td>rCanary pox/TRICOM + GM-CSF</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 127008</td>
<td>NCT01673217</td>
<td>recombinant protein + IFA + GM-CSF + decitabine</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 178610</td>
<td>NCT00106158</td>
<td>recombinant protein + CHP adjuvant</td>
<td>solid tumors (n=20)</td>
</tr>
<tr>
<td>PH 244813</td>
<td>NCT02015416</td>
<td>recombinant protein + GLAAS adjuvant</td>
<td>solid tumors (n=12)</td>
</tr>
<tr>
<td>I 199911</td>
<td>NCT01536054</td>
<td>rCanary pox/TRICOM + rapamycin</td>
<td>ovarian (n=21)</td>
</tr>
<tr>
<td>I 191511</td>
<td>NCT01522820</td>
<td>DC vaccine + rapamycin (cell therapy)</td>
<td>solid tumors (n=20)</td>
</tr>
<tr>
<td>I 248613</td>
<td>NCT02166905</td>
<td>DEC205-NY-ESO-1 complex + IDO inhibitor</td>
<td>ovarian (n=50)</td>
</tr>
<tr>
<td>I 277115</td>
<td>in process</td>
<td>recombinant protein + MIS416 adjuvant + rapamycin</td>
<td>ovarian (n=12)</td>
</tr>
<tr>
<td>I 288216</td>
<td>in process</td>
<td>DEC205-NY-ESO-1 + guadecitabine + atezolizumab</td>
<td>ovarian (n=66)</td>
</tr>
</tbody>
</table>
NY-ESO-1 canary pox vaccine schedule

- **rCNP vector for delivery of NY-ESO-1**
- **TRICOM** T cell co-stimulatory molecules (LFA-3/ICAM-1/B7.1)
- **GM-CSF** enhances efficacy of APCs

≥ 5x10⁶ CCID₅₀ rCNP/TRICOM
(s.c. 1x/mo)

100 μg GM-CSF
(s.c. day 1-4)
NY-ESO-1-specific humoral response to rCanary pox/TRICOM vaccination (n=12)
Targeting NY-ESO-1 for immune responses improves clinical outcomes in NY-ESO-1\(^+\) patients

NY-ESO-1\(^-\) patients

NY-ESO-1\(^+\) patients – no trial:
- n=340
- OS=38 mo

NY-ESO-1\(^+\) patients – NY-ESO-1 trial:
- n=68
- OS=75 mo

Szender et al in revision
Distinct roles of CTLA-4 and PD-1 in the regulation of antitumor T-cell responses

Brahmer JR, Pardoll DM. Cancer Immunol Res. 2013
MDX-1105 (anti-PD-L1) in ovarian cancer patients

1/17 (6%) had partial response
3/17 (18%) had stable disease lasting ≥24 weeks (10 mg dose)

rate of PFS at 24 weeks:
22% (2-43)

Brahmer et al, NEJM 2012
Safety and Antitumor Activity of Anti–PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer: I

2 cases with a Complete response

<table>
<thead>
<tr>
<th>Nivolumab dose</th>
<th>Number of OC patients</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg/kg</td>
<td>10</td>
<td>1 PR (10%)</td>
</tr>
<tr>
<td>3mg/kg</td>
<td>10</td>
<td>2 CR (20%)</td>
</tr>
</tbody>
</table>

- Best overall response was 15%
- DCR: 45%
- PFS: 3.5 months (95% CI, 1.7 to 3.9 months)
- OS: 20.0 months

Hamanashi J. J Clin Oncol 2015 Dec 1;33(34):
Avelumab (anti-PD-L1) in patients with previously treated, recurrent or refractory ovarian cancer

refractory or recurrent ovarian cancer (no PD-L1 preselection) → avelumab 10 mg/kg IV Q2W → safety tolerability PFS, OS

- Tumor size decrease ≥30% observed in 12/124 patients (9.7%)
- SD: 44.0% additional patients
- DCR: 54.7%

Disis et al, ASCO Abstract 2015
Pembrolizumab (anti-PD-1) in patients with PD-L1 positive advanced ovarian cancer

<table>
<thead>
<tr>
<th>Patients (n = 26)</th>
<th>n</th>
<th>%</th>
<th>CI<sub>95</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Best response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response rate</td>
<td>3</td>
<td>11.5</td>
<td>2.4 – 30.2</td>
</tr>
<tr>
<td>CR</td>
<td>1</td>
<td>3.8</td>
<td>0.1 – 19.6</td>
</tr>
<tr>
<td>PR</td>
<td>2</td>
<td>7.7</td>
<td>0.9 – 25.1</td>
</tr>
<tr>
<td>Stable disease</td>
<td>6</td>
<td>23.1</td>
<td>9.0 – 43.6</td>
</tr>
<tr>
<td>Disease Progression</td>
<td>17</td>
<td>65.4</td>
<td>44.3 – 82.8</td>
</tr>
<tr>
<td>Disease control rate</td>
<td>9</td>
<td>34.6</td>
<td>17.2 – 55.7</td>
</tr>
</tbody>
</table>

Varga et al, ASCO Abstract 2015
What are the mechanisms of resistance and limited efficacy of vaccines and checkpoint inhibitors in ovarian cancer?
Why are vaccines and PD-1 pathway blockade only of modest benefit in ovarian cancer?

Activating receptors

- CD28
- OX40
- GITR
- CD137
- CD27
- 4-1BB

Inhibitory receptors

- CTLA-4
- PD-1
- TIM3
- BTLA
- VISTA
- LAG3

agonist antibodies

antagonist antibodies
Expression of PD-1, LAG-3 and CTLA-4 on NY-ESO-1 specific CD8+ cells at the tumor site

The capacity for IFN-γ production is diminished in LAG-3+ and PD1+ subsets of tumor-antigen-specific T cells.
Dual LAG-3 and PD-1 pathway blockade during priming efficiently restores frequency and effector function of NY-ESO-1–specific CD8+ T cells.

<table>
<thead>
<tr>
<th>APC derived from</th>
<th>CD8− PBL</th>
<th>CD8− TIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAG-3 blockade</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PD-1 blockade</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Image showing flow cytometry results](image.png)
Lack of improved survival in ovarian tumor challenged $\text{Lag3}^{-/-}$ or $\text{Pdcd-1}^{-/-}$ mice

Huang, R et al., Oncotarget, 2015
Question #2: Do immune checkpoints collaborate?

CD8⁺ T cells from Lag3⁻/⁻Pdcd1⁻/⁻ mice exhibit enhanced effector phenotype

CD8⁺ T cells isolated from WT Lag3⁻/⁻ Pdcd1⁻/⁻ Lag3⁻/⁻Pdcd1⁻/⁻ DBKO

- anti-CD3/anti-B7-1 activation
- 6 h (IL2, TNFα, IFNγ)
- 24 h (Granzyme B)

Huang, R et al., Oncotarget, 2015
Enhanced anti-tumor immunity in Lag3−/−Pdcd1−/− mice

IE9mp1(OVA) ovarian tumor cells IP

Enhanced survival

Increased CD8+ T cell infiltration

Enhanced T cell function

Huang, R et al., Oncotarget, 2015
Dual LAG3 and PD1 blockade synergistically enhances anti-tumor immunity

Increased CD8+ T cell infiltration

Enhanced survival

Increased proliferation

Enhanced function

Huang, R et al., Oncotarget, 2015
Compensatory upregulation of immune checkpoints in murine OVC after blockade of single checkpoint pathway

Huang, R et al., Oncoimmunology, 2016
Multiple co-inhibitory molecules are expressed by exhausted T cells.

LAG-3+PD-1+ T cell subset preferentially accumulates at the ovarian tumor site.

Dual blockade of PD-1 and LAG-3 restores effector function of antigen specific CD8+ T cells.

Compensatory upregulation of immune checkpoints on TILs in ovca after blockade of a single checkpoint pathway

Improved outcomes in ovarian tumor bearing hosts, but not cure.

Metabolic regulation of T cell function: energy, amino acids (tryptophan, arginine).

Role of indole-amine 2,3 dioxygenase
Tryptophan catabolism: a pivotal regulator of innate and adaptive immunity - IDO1, IDO2, TDO

- T cells sense ↓TRP levels via high levels of uncharged tRNA.
- Activation of GCN2 kinase.
- Triggers a stress-response program.
- Results in cell cycle arrest, differentiation.

Diagram:
- T cells sense ↓TRP levels via high levels of uncharged tRNA.
- Activation of GCN2 kinase.
- Triggers a stress-response program.
- Results in cell cycle arrest, differentiation.

Figure:
- T cell cycle arrest
- Treg generation
- Treg activation

• ↓Tryptophan catabolism, accompanied by low TILs (IDO\textsuperscript{loTILhi}) associated with the most favorable outcome in ovarian cancer patients.

• Pharmacological inhibition as a strategy for overcoming IDO1 mediated immune suppression – converting tumors to IDO\textsuperscript{loTILhi}?
Clinical Trial Hypotheses: IDO1 inhibition will (i) decrease immune suppression and increase immune response within tumor (ii) enhance efficacy of vaccination targeting NY-ESO-1 in ovarian cancer patients.

INCB024360
parallel clinical trials

- Newly diagnosed patients
- No NY-ESO-1 requirement
- Phase 0
- Neo-adjuvant efficacy

SPORE
- Patients in remission
- NY-ESO-1 positive tumors
- Phase I/II
- Combined with NY-ESO-1 vaccine
Hypothesis: IDO1 inhibition will decrease immune suppression and increase immune response within tumor (n=12)

n=12 patients with evaluable pre-op tissue

n=9 adequate biopsy
n=4 inadequate biopsy
n=2 pending
Neoadjuvant INCB024360 is well-tolerated

Reduction in Kyn:Trp ratio – hitting the target in the TME

Elevated ratio of CD8+ TIL infiltration

IFN signature change in tumor after treatment.

Allows for rational design of combination regimens.

Future: Studies underway to evaluate response to tumor antigens and nature of clonal response.
Classification of tumor microenvironments based on TIL and PD-L1 Expression

Adaptive immune resistance

TIL+ PD-L1+ IDO+

Immunological Ignorance

TIL- PD-L1- IDO-

Tolerance (other suppressors)

TIL+ PD-L1- IDO-

Intrinsic Induction

TIL- PD-L1+ IDO+
Q: Can immunotherapy be selected based on the immune landscape?

- PDL1hi
- IDOhi
- Neoaghi
- TIL+
- IDO/PDL1hi or lo
- TIL−

+ checkpoint blockade
+ IDO inhibitor
+ vaccines
+ TCR/CAR-engineered ACT
+ oncolytic viruses

What do you do for a non-inflamed tumor?

adapted from Ribas et al. Cancer Discov 2015
Advantages of adoptive T cell therapy

dramatic regressions
melanoma, synovial sarcoma
up to 10^{11} anti-tumor T cells grown *in vitro*
favorable *in vitro* activation
absence of inhibitory factors
manipulation of the TME before cell transfer
Adoptive T cell therapy (ACT) targeting a shared tumor antigen (NY-ESO-1-TCR) results in regression of large bulky tumors.

perihepatic chest wall lesion in Pt #16

multiple lung metastases in Pt #13

Robbins et al JCO 2011
Generating T cells for adoptive transfer

TIL
Tumor-infiltrating lymphocytes

TCR/CAR
Engineered T cells

ETC
Endogenous T cells

Receptor Transfer

Generating T cells for adoptive transfer

1. **TIL**
 - Tumor-infiltrating lymphocytes
 - IL-2 enrichment
 - TIL enrichment

2. **TCR/CAR**
 - Engineered T cells
 - TCR
 - CAR

3. **ETC**
 - Endogenous T cells
 - Antigen-specific T cell enrichment
 - Cloning
 - Cell sorting
Phase I trial evaluating safety and efficacy of autologous T cells expressing NY-ESO-1 TCR in patients with recurrent or treatment refractory ovarian cancer

eligibility criteria: NY-ESO-1+ & HLA-A0201+

NY-ESO-1^{c259} (1x10^9 – 40x10^9 max)

Response assessments

Day

-5 -4 0 1 7 30 60 90

CTX

additional sites
CoH, MD
Anderson, Stanford, Miami

NCT01567891
AdaptImmune
Phase I/II ACT trial examining safety and efficacy of TGFβ signaling blockade

Activation March 2017
Conclusions and Future of Immunotherapy for Ovarian Cancer

• Effectiveness of vaccines and current immune checkpoint therapies in ovarian cancer may be limited by the multiple immune suppressive networks in the TME.

• Reprogram the TME from tolerogenic to immunogenic via combination strategies (e.g. targeting metabolic dysfunction by IDO, PDL-1, LAG3, TIM3).

• CD8 TCR cell therapy in ovarian cancer may be limited by poor persistence.

• Abrogation of TGF-β signaling in T cells enhances persistence.

• Combination strategies, minimizing toxicities.
Which patients are most likely to respond?
Biomarkers of responsiveness?
 PD-L1 / IDO expression (other ligands)
 Mutational load
 Degree of T cell infiltration
Mechanisms of resistance to checkpoint blockade?
Beyond PD-1/PD-L1 and CTLA4: Advancing combinations rapidly and balancing toxicity?
Incorporation of Adoptive T cell therapy (cost, logistics, toxicity)
Acknowledgements

Roswell Park Cancer Institute
Buffalo, NY

Raya Huang
Feng Qian
Tony Miliotto
Cheryl Eppolito
Bob McGray
Amit Lugade

Junko Matsuzaki
Takemasa Tsuji
Richard Koya
Thinle Chodon
Shashikant Lele
Peter Frederick
Emese Zsiros

Kevin Eng
Sebastiano Battaglia
Song Liu

Sacha Gnjatic
Erika Ritter
Gerd Ritter
Ralph Venhaus
Lloyd J. Old

Mac Cheever
Richard Shine
Steve Fling et al.
Melissa Geller (U of Minn)

- NCI R01CA158318-01A1
- NCI Ovarian Cancer SPORE: (P50 CA159981-01A1)
- RPCI Alliance Foundation
- NCI P30 CA016056-32