Exercise and physical activity during cancer treatment

Matthew Maddocks MSCP PhD
Specialist Physiotherapist
Lecturer in Health Services Research
Outline

• Scene setting and rationale
• Exercise based approaches
• Challenges to a ‘training mind-set’
• Physical activity programmes
• Summary and conclusions
Whole body exercise performance

Whole body exercise performance

- resection-related impairment
- radiation induced pneumonitis
- Chemotherapy induced anaemia

Age, comorbidities (cardiovascular), sedentary lifestyle

Effect of bed rest in older adults

Table. Effects of 10 Days of Bed Rest in Older Adults

<table>
<thead>
<tr>
<th>No. of Participants (N = 12)*</th>
<th>Mean (95% Confidence Interval)</th>
<th>Bed Rest</th>
<th>Change</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle fractional synthetic rate, % per h†</td>
<td>10</td>
<td>0.077 (0.059 to 0.095)</td>
<td>0.061 (0.036 to 0.067)</td>
<td>−0.027 (−0.007 to −0.047)</td>
</tr>
<tr>
<td></td>
<td>% Change</td>
<td></td>
<td>−30.0 (−7.0 to −54.0)</td>
<td></td>
</tr>
<tr>
<td>DEXA lean mass, kg‡</td>
<td>10</td>
<td>48.05 (40.61 to 55.49)</td>
<td>46.51 (39.57 to 53.45)</td>
<td>−1.50 (−0.62 to −2.48)</td>
</tr>
<tr>
<td>Whole body</td>
<td>% Change</td>
<td></td>
<td>−3.2 (−1.4 to −5.0)</td>
<td></td>
</tr>
<tr>
<td>Lower Extremity</td>
<td>% Change</td>
<td></td>
<td>−6.3 (−3.1 to −9.5)</td>
<td></td>
</tr>
<tr>
<td>Isokinetic muscle strength, Nm per s§</td>
<td>11</td>
<td>120 (96 to 145)</td>
<td>101 (81 to 121)</td>
<td>−19 (−11 to −30)</td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td>−15.6 (−8.0 to −23.1)</td>
<td></td>
</tr>
</tbody>
</table>

3-fold loss compared to young adults in 1/3 time
Trajectories of functional decline

Lunney et al. JAMA 2003;289:2387-92
Trajectories of functional decline

Gill et al. NEJM 2010;362:1173-80
Impact of cancer on function

Cancer Cachexia

Impairments
- ↓ muscle mass, function ± quality
- energy deficiency
- ↑ symptom burden

Functional Consequences
- ↓ exercise capacity
- ↓ physical activity level
- ↓ performance of daily tasks

Described by:
- Frequency
- Intensity
- Type
- Timing

Short-Term Preoperative High-Intensity Interval Training in Patients Awaiting Lung Cancer Surgery: A Randomized Controlled Trial

- >80% underwent major resection via open thoracotomy
- ↑ peak VO$_2$ (15%), peak work rate (6%) and 6MWD (15%) compared to deterioration in usual care
- Primary endpoint: 30 day mortality or in-hospital complications (Grade ≥2 TMM)
- Change in sample size after interim analysis

<table>
<thead>
<tr>
<th>Table 4. Primary and Secondary Outcomes after Lung Resection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Primary composite end point</td>
</tr>
<tr>
<td>30-Day mortality</td>
</tr>
<tr>
<td>Respiratory complications</td>
</tr>
<tr>
<td>ARDS</td>
</tr>
<tr>
<td>Ventilation (>6 h)</td>
</tr>
<tr>
<td>Pneumonia</td>
</tr>
<tr>
<td>Atelectasis</td>
</tr>
<tr>
<td>Cardiovascular complications</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>Acute heart failure</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Arrhythmias</td>
</tr>
<tr>
<td>Surgical complications</td>
</tr>
<tr>
<td>Reoperation</td>
</tr>
<tr>
<td>Bronchopleural fistula</td>
</tr>
<tr>
<td>Wound infections</td>
</tr>
<tr>
<td>Renal dysfunction</td>
</tr>
<tr>
<td>Length of stay in PACU, h</td>
</tr>
<tr>
<td>Unplanned ICU admission</td>
</tr>
<tr>
<td>Length of stay in hospital, d</td>
</tr>
</tbody>
</table>

High-intensity training following lung cancer surgery: a randomised controlled trial

- ↑ SF-36 physical + mental
- ↑ EORTC C30 dyspnoea

Edvardsen et al. Thorax. 2015;70:244-50
Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial

- Large but select group
- ↓ fatigue
- ↑ exercise capacity
- ↑ muscle strength
- ↑ PAL
- ↑ SF-36 scores
- EORTC-C30 unchanged

Adamsen et al. BMJ 2009;339:b3410
Patient-Reported Outcomes, Body Composition, and Nutrition Status in Patients With Head and Neck Cancer: Results From an Exploratory Randomized Controlled Exercise Trial

Adamsen et al. Cancer 2016;112:1185-1200

+ Physician referral
+ Health education
+ Behaviour change support
+ Individualised nutrition
+ Social support

n=60
60 min, 4x/wk
Mod R+A, 12 wks

- Loss to follow up 36% vs. 23%
- Survival markedly different in non-completers
- Fatigue unchanged but function improved

Table 3. Estimated differences in fatigue (physical, mental, and total) and physical performance outcomes between the physical exercise group (PEG) and the usual care group (UCG) using multiple imputation

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Baseline Mean (SD)</th>
<th>8 Wks Mean (SD)</th>
<th>Estimated mean difference (95% CI)</th>
<th>p-value^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>18.0 (0.58)</td>
<td>17.2 (0.62)</td>
<td>−0.5 (−2.0–1.0)</td>
<td>0.53</td>
</tr>
<tr>
<td>PEG</td>
<td>18.1 (0.48)</td>
<td>16.8 (0.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>12.6 (0.43)</td>
<td>12.1 (0.50)</td>
<td>−0.3 (−1.6–1.0)</td>
<td>0.62</td>
</tr>
<tr>
<td>PEG</td>
<td>12.9 (0.37)</td>
<td>11.9 (0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>5.4 (0.22)</td>
<td>5.2 (0.19)</td>
<td>−0.3 (−0.6–0.3)</td>
<td>0.53</td>
</tr>
<tr>
<td>PEG</td>
<td>5.2 (0.19)</td>
<td>4.9 (0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shuttle walk test, m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>390 (17.8)</td>
<td>369 (21.5)</td>
<td>60 (16.0–103.4)</td>
<td>0.008</td>
</tr>
<tr>
<td>PEG</td>
<td>339 (17.1)</td>
<td>380 (24.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sit-to-stand, times per 30 seconds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>11.6 (0.38)</td>
<td>11.9 (0.48)</td>
<td>0.5 (−0.5–1.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>PEG</td>
<td>10.9 (0.32)</td>
<td>11.7 (0.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximal stepping, cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>92.0 (2.2)</td>
<td>90 (2.0)</td>
<td>3.0 (−1.8–7.7)</td>
<td>0.22</td>
</tr>
<tr>
<td>PEG</td>
<td>85.8 (2.3)</td>
<td>88.9 (2.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handgrip strength, kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCG</td>
<td>29.6 (0.94)</td>
<td>28.3 (0.97)</td>
<td>2.0 (0.4–3.5)</td>
<td>0.01</td>
</tr>
<tr>
<td>PEG</td>
<td>26.4 (0.85)</td>
<td>27.5 (0.95)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Analysis of covariance with baseline measurement and group as covariates (coefficient for treatment group in analysis of covariance). Abbreviations: CI, confidence interval; SD, standard deviation.

Oldervoll et al. Oncologist 2010;89:611-6

n=231
60 min, 2x/wk
Mod R>A, 8wks
EXERCISE

Some motivation required.
Individual factors influencing behaviour

Capability

- **Physical**: Symptoms & treatment side-effects, Medical complications, Comorbidities, Sedentary lifestyle
- **Psychological**: Mood, Feeling overwhelmed, Introversion, Confusion about PA

Opportunity

- **Physical**: Venue & transport, Format, type of PA, supervision, Time & convenience, Timing after diagnosis, Weather, Delivery of information, Access to services
- **Social**: Group exercise, Carers and relatives influence, Encouragement from HCPs

Motivation

- **Automatic**: Experienced impact of PA, Sedentary lifestyle, Opportunity for behaviour change, Perceived relevance, Fear of PA
- **Reflective**: Patient beliefs about benefits and harms of PA

Behaviour

- Physical Activity

Granger et al. Support Care Cancer 2017;25:983-99
Contextual factors influencing behaviour

1. Patient physical and psychological influences
 - Symptoms
 - Psychological factors
 - Comorbidities

2. Patient knowledge and past behavior
 - Past physical activity behavior

3. Clinicians knowledge and beliefs about physical activity
 - Clinicians belief about physical activity
 - Education and knowledge

4. Workplace culture
 - Culture of physical activity
 - Prioritization and time

5. Healthcare system - environmental and structural influences
 - Staffing and services
 - Pathways, protocols and referrals
 - Integration of the MDT and continuity of care for the patient
 - Timing in the current model of care

Improving accessibility of exercise
- Offer programme proactively -

- more likely patients have capacity
- focus on maintenance may allow benefit from low dose programmes
 - dose response
 - ‘more the better’
 - ‘any better than none’
- low intensity or low volume models sufficient to prevent disuse atrophy

Typically ≥ 2/3 patients asked about an exercise programme report interest.

General preference to undertake exercise:
- at home
- alone and unsupervised
- following systemic treatment.

Improving accessibility of exercise
- Offer a range of programmes -

Maddocks et al. Psycho-Oncology 2011;20:173-8
Lowe et al, Support Care Cancer 2010;18:1469-75
Improving accessibility of exercise
- Promote usual physical activity-

- Treat activity as a ‘vital sign’
- Reassure patients around normal exertion symptoms
- Promote opportunities to be active by ‘licensing’ daily tasks, active hobbies and interests
- Ask the patient about their goals
A Home-Based Exercise Program to Improve Function, Fatigue, and Sleep Quality in Patients With Stage IV Lung and Colorectal Cancer: A Randomized Controlled Trial

- ‘REST’ programme
- Rapid Easy Strength Training
- Simple pedometer

- ↓ fatigue
- ↑ mobility
- ↑ sleep quality

Cheville et al. JPSM 2013;45(5):811-21
Randomised controlled trial on the effectiveness of home-based walking exercise on anxiety, depression and cancer-related symptoms in patients with lung cancer

Effect of walking on circadian rhythms and sleep quality of patients with lung cancer: a randomised controlled trial

It had a revolutionary effect on me... It was just the right thing at the right time. I think more about walking now, I think I can walk there instead of catching the bus.

I would recommend it, particularly to people who are not sporty... When I’m on the walks I forget about the cancer.

I (the group) makes me do more than I would if I was walking on my own, as I live on my own it’s great being out and meeting other people.

I no longer dwell on being terminal – just on getting on with making life as enjoyable as possible, greatly helped by friends made on regular walks.

Tsianakas et al. BMJ Open 2017;7:e013719
Conclusions

• Cancer and its treatment reduce physical function through an effect on cardiovascular and muscular fitness

• Exercise and physical activity can help alleviate the consequences of these impairments on patients.

• Intensive, supervised exercise programmes are effective across a range of outcomes, but are not always acceptable or practical.

• Early intervention with a focus on physical activity may help improve acceptability and accessibility.