The Evolution of RT Techniques for Gynaecological Cancers in a developing country context

Hannah Simonds
Stellenbosch University/Tygerberg Academic Hospital
ESMO Africa 2017
I have no disclosures
Celebrating Women in Science
11 February
External beam radiotherapy
Where did we start…

Started with AP/PA opposing fields

Conventional treatment 4 field box technique.

Covering primary and draining nodes

Simulation field using bony landmarks.
Simulator planning
Fig 3. Standard anterior external-beam irradiation port used to treat locally advanced cervical carcinoma limited to the pelvis

Moving from 2-D to 3-D

- Risk of geographical miss of both primary and nodal areas
- Unnecessary irradiation of normal tissues: bladder, rectum, small bowel and bone marrow
- Gillian Thomas - Sunnybrook, Toronto
- 43 patients (retrospective analysis)
- Contoured vessels as a surrogate for nodes
- Conventional 2-D/virtual simulation borders
<table>
<thead>
<tr>
<th></th>
<th>Superior Border N (%)</th>
<th>Lateral Border AP Field N (%)</th>
<th>Anterior Border LAT Field N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 Vessel Outside Field</td>
<td>11 (25.6)</td>
<td>0 (0.0)</td>
<td>2 (4.6)</td>
</tr>
<tr>
<td>≥1 Inadequate Margin (<15 mm)</td>
<td>23 (53.5)</td>
<td>9 (20.9)</td>
<td>28 (65.1)</td>
</tr>
<tr>
<td>Both Margins Adequate (15-20 mm)</td>
<td>5 (11.6)</td>
<td>15 (34.9)</td>
<td>7 (16.3)</td>
</tr>
<tr>
<td>Both Margins Generous (>20 mm)</td>
<td>4 (9.3)</td>
<td>19 (44.2)</td>
<td>6 (14.0)</td>
</tr>
</tbody>
</table>
Clearly the good old simulator is not enough
Development of 3-D techniques

Significant proportion have sub-optimal nodal coverage

Techniques to evaluate nodes

MRI with contrast USPIO (ultra small para-magnetic iron oxide)

>95% nodes covered by 7mm margin

Taylor et al, Int J Rad Onc Biol Phys Vol. 63, No. 5, pp 1604
Development of contouring guidelines
Consensus Guidelines for the Deliniation of the CTV in the Postoperative Pelvic Radiotherapy of Endometrial and Cervical Cancer

William Small Jr., M.D., Radiation Oncology *
Arno J. Mundt, MD, Radiation Oncology†

* Robert H. Lurie Comprehensive Cancer Center of Northwestern University.
† University of California San Diego
Now we’re getting somewhere……
What’s the next step?

What about positive nodes?
Can we reduce dose to OAR?
What about organ motion?
Rotational therapy/IMRT

1. Reduce dose to OAR
2. Boost involved nodes
3. Reduce treatment time
4. Plan of the day!
Plan of the day
Fig 2. For a study patient, sagittal views of the empty bladder CT scan with the empty-to-half-full-bladder PTV (blue) projected on it (left), and of the full bladder CT scan with the half-full-to-full-bladder PTV (red) on the (right).

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169202
Now this is real radiotherapy, finally I’m earning my money!

What more could I do?!
Improved imaging techniques – PET-CT
PET-CT planning integration
State-of-the-art advanced RT
Benefits of advanced techniques

Accurate delivery of dose to a smaller volume

Reduced dose to bowel/rectum/bladder

Adaptive RT – rescan, replan

BUT -- Labour/resource/skill intensive
2-D brachytherapy

1950’s
Caesium LDR
Iridium HDR
One size fits all
3-D Brachytherapy planning

Championed by the Potter group from Vienna

MRI-based imaging and volumetric planning

Conformal planning of visible residual disease
GEC-ESTRO guidelines
Is it worth all the effort???
Image guided brachytherapy in cervical cancer

Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study

Alina Sturdza a, Richard Pötter a,*, Lars Ulrik Fokdal b, Christine Haie-Meder c, Li Tee Tan d, Renaud Mazeron e, Primož Petric e, Barbara Šegedin e, Ina Maria Jurgenliemk-Schulz f, Christel Nømden f, Charles Gillham g, Orla McArdle g, Erik Van Limbergen h, Hilde Janssen h, Peter Hoskin i, Gerry Lowe i, Ekkasit Tharavichitkul j, Elena Villafranca k, Umesh Mahantshetty l, Petra Georg a, Kathrin Kirchheiner a, Christian Kirisits a, Kari Tanderup b, Jacob Christian Lindegaard b
Methods/results

• 12 institutions
• Retrospective observational study
• Jan 1998- August 2012
• Primary endpoint- local control (cervix)
• Secondary endpoints
 – Pelvic control
 – OS
 – CSS
 – Toxicity

• 731 patients
• 19.8% IIIb
• Mean D90 HR-CTV 87Gy
Overall survival and FIGO stage

<table>
<thead>
<tr>
<th>FIGO Stage</th>
<th>OS Events</th>
<th>3y</th>
<th>5y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>21</td>
<td>88%</td>
<td>83%</td>
<td>123</td>
</tr>
<tr>
<td>2B</td>
<td>114</td>
<td>78%</td>
<td>70%</td>
<td>368</td>
</tr>
<tr>
<td>3B</td>
<td>75</td>
<td>56%</td>
<td>42%</td>
<td>145</td>
</tr>
</tbody>
</table>

Local control and FIGO stage

<table>
<thead>
<tr>
<th>FIGO Stage</th>
<th>LC Events</th>
<th>3y</th>
<th>5y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B</td>
<td>2</td>
<td>98%</td>
<td>98%</td>
<td>123</td>
</tr>
<tr>
<td>2B</td>
<td>28</td>
<td>93%</td>
<td>91%</td>
<td>368</td>
</tr>
<tr>
<td>3B</td>
<td>28</td>
<td>79%</td>
<td>75%</td>
<td>145</td>
</tr>
</tbody>
</table>

Fig. 4. Actuarial Kaplan–Meier estimates for stage related overall survival (OS) in patients with stage IB, IIB, IIBB disease (n = 636). Absolute number of events and actuarial estimates for outcome at 3 and 5 years are indicated.

Fig. 2. Actuarial Kaplan–Meier estimates for stage related local control (LC) in patients with stage IB, IIB, IIBB disease (n = 636). Absolute number of events and actuarial estimates for outcome at 3 and 5 years are indicated.
Image guided brachytherapy in cervical cancer

Dose–volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: Results from the prospective multicenter EMBRACE study

Renaud Mazeron a,*, Lars U. Fokdal b, Kathrin Kirchheiner c, Petra Georg c, Noha Jastaniyah c, Barbara Šegedin d, Umesh Mahantshetty e, Peter Hoskin f, Ina Jürgenliemk-Schulz g, Christian Kirisits c, Jacob C. Lindegaard b, Wolfgang Dörr c, Christine Haie-Meder a, Kari Tanderup b, Richard Pötter c, on behalf of the EMBRACE collaborative group
METHODs/ Results

24 centres worldwide

Institutional EBRT and chemo regimen

MRI based HDR and LDR brachytherapy

Prospective collection of DVH information and evaluated toxicity 3-60 months

960 evaluable patients

Bottom line = significant increase of Grade 2-4 toxicity if mean dose to the rectum increased.

D2cc³ > 75 Gy increased severe morbidity e.g. fistulae
Benefits of 3-D brachytherapy

• Accurate target definition – including residual areas in the parametria

• Record and reduce dose to the rectum to avoid late events

• Improve local control

• Overall survival?

• BUT - Labour/ resource/ skill intensive
So what?
What would I do if …..

I had a Cobalt and no simulator
 Clinical mark-up from the iliac crests to the vulva

If I had a simulator
 Treat generous margins from the top of L4 to the bottom of the bony obturator

If I had a CT
 Virtual simulation using templates but checking my anatomy
Cervical cancer palliative RT
Vulva Cancer palliative RT
What would I do if ….

I had a Cobalt and no simulator
 Clinical mark-up from the iliac crests to the vulva
If I had a simulator
 Treat generous margins from the top of L4 to the bottom of the bony obturator
If I had a CT
 Virtual simulation using templates but checking my anatomy

If I had a CT planning system
 Follow the RTOG contouring guidelines and do a decent 3-D plan
If I had a PET-CT
 Use the information to modify my contours
What would I do if….

- If I had a CT-planning system, PET-CT, VMAT, 10 physicists and 1 patient per week
 - A VMAT plan-of-the-day and MRI-guided 3-D HDR brachytherapy!
 - And have a lot of time to drink tea….

Conclusions

• Significant advances in the last 10-15 years in the management of gynaecological radiotherapy patients
• Highly accurate techniques
• Cost – time/ expertise/ infrastructure
• Reality – well-planning 2-D radiotherapy still saves the most lives of cervix cancer patients on the continent