surgical approach for resectable NSCLC

Dominique H. Grunenwald, MD, PhD
Professor Emeritus in Thoracic and Cardiovascular surgery
Pierre & Marie Curie University. Paris. France
SUCCESSFUL REMOVAL OF AN ENTIRE LUNG FOR CARCINOMA OF THE BRONCHUS

EVARTS A. GRAHAM, M.D.
AND
J. J. SINGER, M.D.
ST. LOUIS

Carcinoma of the bronchus in recent years has become a problem of major importance. It is now known that primary carcinoma of the lung, which almost always arises in a bronchus, constitutes between 5 and 10 per cent of all carcinomas. In frequency, therefore, it is comparable with carcinoma of the large intestine, and it is much more frequent than the malignant tumors of some other organs that have received much more comment. The problem of primary carcinoma of the lung is of special importance, since up to the present time at least the prognosis has been almost uniformly bad because of the complete futility of any methods of treatment other than surgical excision. There is no record in the literature of the successful treatment by radiotherapy of a single case in which the pathologic evidence has been incontrovertible and in which a five year interval without recurrence has

1933 – Graham EA, Singer JJ. Successful removal of an entire lung for carcinoma of the bronchus. JAMA 1933;101:1371-4
1933 – Graham EA, Singer JJ. Successful removal of an entire lung for carcinoma of the bronchus. JAMA 1933;101:1371-4

SUCCESSFUL REMOVAL OF AN ENTIRE LUNG FOR CARCINOMA OF THE BRONCHUS

Evarts A. Graham, M.D.
and
J. J. Singer, M.D.
St. Louis

Carcinoma of the bronchus in recent years has become a problem of major importance. It is now known that primary carcinoma of the lung, which almost always arises in a bronchus, constitutes between 5 and 10 per cent of all carcinomas. In frequency, therefore, it is comparable with carcinoma of the large intestine, and it is much more frequent than the malignant tumors of some other organs that have received much more comment. The problem of primary carcinoma of the lung is of special importance, since up to the present time at least the prognosis has been almost uniformly bad because of the complete futility of any methods of treatment other than surgical excision. There is no record in the literature of the successful treatment by radiotherapy of a single case in which the pathologic evidence has been incontrovertible and in which a five year interval without recurrence has...
is it reasonable to sacrifice a vital organ for treating a molecular disorder?
what is the impact of surgery on lung cancer survival?

- is the patient operable?
- is the tumour resectable?
- for this surgical patient, will surgery achieve better survival and quality of life
  - than no treatment?
  - than other treatments?
  - in the context of multimodal therapy compared to surgery alone, or no surgery?
questions

<table>
<thead>
<tr>
<th>questions</th>
<th>depends on</th>
</tr>
</thead>
<tbody>
<tr>
<td>operable patient?</td>
<td>clinical performance</td>
</tr>
<tr>
<td>resectable tumour?</td>
<td>TNM staging</td>
</tr>
<tr>
<td>type of resection?</td>
<td>local invasion</td>
</tr>
<tr>
<td>which approach?</td>
<td>tumour size and location</td>
</tr>
<tr>
<td>therapeutic pathway?</td>
<td>state of the art</td>
</tr>
<tr>
<td>alternatives?</td>
<td>patient’s condition or refusal</td>
</tr>
</tbody>
</table>
definitions

- an "operable" patient has an acceptable risk of death or morbidity

- a "resectable" tumour can be completely excised by surgery with clear pathological margins
is the patient operable?

does the patient have the functional pulmonary reserve to tolerate the proposed resection to maintain a reasonable quality of life?

surgical resection offers little benefit if the patient suffers postoperative pulmonary insufficiency
risks from surgery increase with age and comorbidities

does the patient have the functional pulmonary reserve to tolerate the proposed resection to maintain a reasonable quality of life?

surgical resection offers little benefit if the patient suffers postoperative pulmonary insufficiency … or death
Preoperative cardiac and respiratory evaluation (ERS-ESTS)

first: cardiac evaluation

RCRI ≥2 or:
1) Any cardiac condition requiring medications
2) A newly suspected cardiac condition
3) Inability to climb two flights of stairs

Yes

Cardiac consultation with noninvasive cardiac testing treatments as per AHA/ACC guidelines

Need for coronary intervention (CABG or PCI)

Continue with ongoing cardiac care
Institute any needed new medical interventions (i.e. beta-blockers, anticoagulants or statins)

No

Cardiac assessment: low risk or treated patient (fig. 1)

FEV₁

Either one <80%

Split function

<35% or <10 mL·kg⁻¹·min⁻¹

Exercise testing

Peak VO₂

>75% or >20 mL·kg⁻¹·min⁻¹

35–75% or 10–20 mL·kg⁻¹·min⁻¹

At least one <30%

Lung function tests (fig. 2)

RCRI [2]
High risk surgery (including lobectomy or pneumonectomy)
Ischaemic heart disease (prior myocardial infarction, angina pectoris)
Heart failure
Insulin-dependent diabetes
Previous stroke of TIA
Creatinine ≥2 mg·dL⁻¹

Lobectomy or pneumonectomy are usually not recommended. Consider other options

Resection up to calculated extent

Resection up to pneumonectomy

Preoperative cardiac and respiratory evaluation (ERS-ESTS)

2nd : respir. evaluation

Cardiac assessment: low risk or treated patient (fig. 1)

- FEV$_1$
- DL$_{CO}$
- Either one <80%

Exercise testing
- Peak VO$_2$
- <35% or <10 mL·kg$^{-1}$·min$^{-1}$
- >75% or >20 mL·kg$^{-1}$·min$^{-1}$

Split function
- ppo-$FFV_1$
- ppo-$DL_{CO}$
- Both >30%

- At least one <30%
- ppo-peak VO$_2$
- <35% or <10 mL·kg$^{-1}$·min$^{-1}$
- >35% or >10 mL·kg$^{-1}$·min$^{-1}$

Lobectomy or pneumonectomy are usually not recommended. Consider other options

Resection up to calculated extent

Resection up to pneumonectomy

RCRI >2 or:
- 1) Any cardiac condition requiring medications
- 2) A newly suspected cardiac condition
- 3) Inability to climb two flights of stairs

Yes

Cardiac consultation with noninvasive cardiac testing treatments as per AHA/ACC guidelines

No

Need for coronary intervention (CABG or PCI)

Continue with ongoing cardiac care

Institute any needed new medical interventions (i.e. beta-blockers, anticoagulants or statins)

Postpone surgery for ≥6 weeks

Lung function tests (fig. 2)

RCRI (2)

- High risk surgery (including lobectomy or pneumonectomy)
- Ischaemic heart disease (prior myocardial infarction, angina pectoris)
- Heart failure
- Insulin-dependent diabetes
- Previous stroke of TIA
- Creatinine ≥2 mg·dL$^{-1}$

History
- Physical examination
- Baseline ECG
- Calculate RCRI

assessment by a multidisciplinary team (MDT)

- thoracic surgery
- pulmonology
- oncology
- imaging
- nuclear medicine
- pathology

consideration of the patient’s general condition
- comorbidity
- lung condition
- cardiac condition

diagnostic and therapeutic indications
Tripartite risk assessment (SCTS-BTS)

Risk assessment for surgery

- Post-operative cardiac event
  - ACC/AHA* risk stratification
  - +/- cardiology review
  - *see text

- Peri-operative death
  - Thoracocscore Appendix 5

- Post-operative dyspnoea
  - Dynamic lung volumes, transfer factor
  - +/- split function testing

Address any potentially modifiable risk factors & reassess

Does the patient accept the risk in each category +/- potential impact on lifestyle?

- No
  - Exclude surgery from multi-modality management

- Yes
  - Offer surgery as part of multi-modality management

---

Eric Lim et al. Thorax 2010;65:iii1-iii27
Tripartite risk assessment (SCTS-BTS)

Risk assessment for surgery:
- Post-operative cardiac event
- Peri-operative death
- Post-operative dyspnoea

ACC/AHA* risk stratification +/- cardiology review
Thoracoscore Appendix 5
Dynamic lung volumes, transfer factor +/- split function testing

Address any potentially modifiable risk factors & reassess

Does the patient accept the risk in each category +/- potential impact on lifestyle?

No
Exclude surgery from multi-modality management

Yes
Offer surgery as part of multi-modality management

Risk assessment for post-treatment dyspnoea:
- Spirometry and transfer factor
  - Low risk
    - ppoFEV1≥40% and ppo TLco≥ 40%
  - Moderate to high risk
    - ppoFEV1<40% and / or ppo TLco<40%

Functional assessment
- Good
- Moderate / poor

1. Consider split lung function testing for patients in this group if there is any suspicion of a ventilation perfusion mismatch (e.g. compression of a pulmonary artery or marked emphysema in the lobe with cancer) to allow more accurate estimation of post-operative values.
2. Patients in this sub-group are at high risk of ventilator dependency after surgery. It is important to ensure that criteria for LVRS have been considered as lung function can improve in appropriately selected patients.

Copyright © BMJ Publishing Group Ltd & British Thoracic Society. All rights reserved.

Eric Lim et al. Thorax 2010;65:iii1-iii27
**Tripartite risk assessment (SCTS-BTS)**

**Risk assessment for surgery**

- Post-operative cardiac event
  - ACC/AHA* risk stratification
    +/− cardiology review
    *see text

- Peri-operative death
  -Thoracoscoring Appendix 5

- Post-operative dyspnoea
  - Dynamic lung volume,
    transfer factor
    +/− split function testing

**Risk assessment for post-treatment dyspnoea**

- Spirometry and transfer factor
  - **Low risk**
    - ppoFEV1>40% and
      ppo TLC 0>40%

  - **Moderate to high risk**
    - ppoFEV1 <40% and
      / or ppo TLC <40%

**Functional assessment**

- **Good**
- **Moderate / poor**

**Moderate risk**

- Patients need to be informed of risk of
  mid-moderate post-operative shortness
  of breath with surgery or radiotherapy

**High risk**

- Patients need to be informed of high
  risk of severe post-operative dyspnoea
  and / or long term oxygen therapy with
  surgery or radiotherapy

1. Consider split lung function testing for patients in this group if there is any suspicion of a ventilation perfusion mismatch (e.g. compression of a pulmonary artery or marked emphysema in the lobe with cancer) to allow more accurate estimation of post-operative values.

2. Patients in this sub-group are at high risk of ventilator dependency after surgery. It is important to ensure that criteria for LVRS have been considered as lung function can improve in appropriately selected patients.

---

**Patient Information**

Eric Lim et al. Thorax 2010;65:iii1-iii27

Copyright © BMJ Publishing Group Ltd & British Thoracic Society. All rights reserved.
assessment by a multidisciplinary team (MDT)

thoracic surgery
pulmonology
oncology
imaging
nuclear medicine
pathology

consideration of the patient’s general condition
comorbidity
lung condition
cardiac condition

and acceptance

diagnostic and therapeutic indications
assessment by a multidisciplinary team (MDT)

the thoracic surgeon
pulmonology
oncology
imaging
nuclear medicine
pathology

consideration of the patient’s general condition
comorbidity
lung condition
cardiac condition

and acceptance

diagnostic and therapeutic indications
definitions

- an "operable" patient has an acceptable risk of death or morbidity

- a "resectable" tumour can be completely excised by surgery with clear pathological margins

"early stage"
what is early stage lung cancer?

this refers to cancers that are caught early enough that they have the potential to be cured with surgery

the TNM stage influences survival after surgery

<table>
<thead>
<tr>
<th>Stage</th>
<th>Substage</th>
<th>T Stage</th>
<th>N Stage</th>
<th>M Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>IA</td>
<td>T1a-b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>IIA</td>
<td>T1a-b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>IIB</td>
<td>T2b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>IIIA</td>
<td>T1-2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>IIIB</td>
<td>T4</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>M1a-b</td>
</tr>
</tbody>
</table>
TNM Classification for Lung Cancer (8th Edition)

**T Classification: importance of tumor size highlighted**

**T1**
- T1a (≤1 cm), T1b (>1 to ≤2 cm), and T1c (>2 to ≤3 cm)

**T2**
- T2a (>3 to ≤4 cm) and T2b (>4 to ≤5 cm)

**T3**
- (>5 to ≤7 cm)

**T4**
- > 7 cm (prev. T3)

**T2** involvement of main bronchus regardless of distance from carina (prev. T2/3)

**T2** partial and total atelectasis/pneumonitis (prev. T2/3)

**T4** diaphragm invasion (prev. T3)

Deletion of mediastinal pleural invasion as a T descriptor

**N Staging unchanged, new descriptors proposed for prospective testing and validation**

**p N1**
- single (pN1a) and multiple (pN1b) nodal station involvement

**pN2**
- pN2a1 (single pN2 nodal station involvement without pN1 disease, “skip metastasis”)
  - pN2a2 with single station pN2 and pN1 involvement
  - pN2b with involvement of multiple pN2 nodal stations

**M Staging**

**M1a** unchanged

**M1b** single metastasis in a single organ

**M1c** multiple metastases
# Stage Groupings (8th Edition)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>N0 and (\leq 3) cm</td>
</tr>
<tr>
<td>IA1, IA2, IA3</td>
<td>(a category for each cm in size)</td>
</tr>
<tr>
<td>IB</td>
<td>N0 and (&gt;3) to (\leq 4) cm</td>
</tr>
<tr>
<td>IIA</td>
<td>N0 and (&gt;4) to (\leq 5) cm</td>
</tr>
<tr>
<td>IIB</td>
<td>N0 and (&gt;5) to (\leq 7) cm</td>
</tr>
<tr>
<td></td>
<td>or (N1) and smaller tumors</td>
</tr>
<tr>
<td>IIIA</td>
<td>N0 and (&gt;7) cm or others T4</td>
</tr>
<tr>
<td></td>
<td>(N1) and T3-T4</td>
</tr>
<tr>
<td></td>
<td>(N2) and T1a-T2b</td>
</tr>
<tr>
<td>IIIB</td>
<td>(N2) and T3-4</td>
</tr>
<tr>
<td></td>
<td>(N3) and T1a-T2b</td>
</tr>
<tr>
<td>IIIC</td>
<td>(N3) and T3-T4</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T Any N with M1a and M1b</td>
</tr>
<tr>
<td>IVB</td>
<td>(&gt;1) extrathoracic metastasis (M1C)</td>
</tr>
</tbody>
</table>
### 8th edition TNM staging system

<table>
<thead>
<tr>
<th>Stage</th>
<th>IA 1</th>
<th>IA 2</th>
<th>IA 3</th>
<th>IB</th>
<th>IIA</th>
<th>IIB</th>
<th>IIIA</th>
<th>IIIB</th>
<th>IVA-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA T1a N0 M0</td>
<td>≤1 cm</td>
<td></td>
<td></td>
<td>T2a N0 M0</td>
<td>&gt;3 to ≤4 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early IA2 T1b N0 M0</td>
<td>&gt;1 to ≤2 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA3 T1c N0 M0</td>
<td>&gt;2 to ≤3 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB T2a N0 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stage IIA</td>
<td>T2b N0 M0</td>
<td>&gt;4 to ≤5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIB</td>
<td>T3 N0 M0</td>
<td>&gt;5 to ≤7 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>T1a-c N1 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2a-b N1 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>T4 N0 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>locally advanced</td>
<td>T3-4 N1 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1a-2b N2 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIIB</td>
<td>T3-4 N2 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>locally advanced</td>
<td>T1a-T2b N3 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVA-B</td>
<td>Any T, any N, M1a-b-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>questions</td>
<td>depends on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operable patient?</td>
<td>clinical performance YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>resectable tumour?</td>
<td>TNM staging YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type of resection?</td>
<td>local invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>which approach?</td>
<td>tumour size and location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>therapeutic pathway?</td>
<td>state of the art</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternatives?</td>
<td>patient’s condition or refusal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
type of resection depends on local invasion (T factor)

wedge resection

segmentectomy

lobectomy

pneumonectomy

along with systematic en-bloc dissection of mediastinal lymph node stations!
type of resection depends on local invasion (T factor)

lobectomy + extended resection

extended pneumonectomy

- T3:
  - Tumour: > 5cm, ≤ 7cm
  - Chest wall invasion, including Pan tumours without invasion of vertebra, body or spinal canal, encasement the subclavian vessels, or unique involvement of the superior branch the brachial plexus (C8 or above)
  - Separate tumour nodule(s) in the lobe of the primary

- T4:
  - Tumour invades adjacent vertebral body
  - Diaphragmatic invasion
  - Tumour invades adjacent vertebra body
  - Pancoast tumours with invasion of one or more of the following structures:
    - vertebral body or spinal canal
    - brachial plexus (C8 or above)
    - subclavian vessels
  - Tumour invades aorta and/or recurrent laryngeal nerve
  - Tumour > 7cm
  - Tumour accompanied by ipsilateral, separate tumour nodules, different lobe

Rami Porta K, Boileau V, Crowley J et al. The MSCL lung cancer staging project: proposals for the revisions of
bilobectomy (right side)

indication
parenchyma bronchus
sublobar resection?

wedge resection

anatomical segmentectomy
stage I tumours (TNM 8th edition)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA1</td>
<td>IA1 T1a N0 M0 (≤1 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early IA2</td>
<td>IA2 T1b N0 M0 (&gt;1 to ≤2 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA3</td>
<td>IA3 T1c N0 M0 (&gt;2 to ≤3 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>T2a N0 M0 (&gt;3 to ≤4 cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

potential to be cured with surgery... alone

the gold standard in stage I is an anatomic lobar resection

Ginsberg RJ and Rubinstein LV 1995
sublobar resection: a movement from the Lung Cancer Study Group

1995 LCSG consensus: lobectomy = gold-standard (stage I nsclc)

enhancements in imaging technology
screening programs

larger cohorts of localized early-stage disease

minimally invasive surgical resection
reduced perioperative morbidity and mortality
equivalent oncologic effectiveness to open surgery

challenging lobectomy as a standard for small tumors

survival following lobectomy and limited resection for the treatment of stage I nsclc \(\leq 1\) cm in size: a review of SEER data (Surveillance, Epidemiology, and End Results registry)

stage I nsclc \(\leq 1\) cm in size \(2,090\) limited resect. (segment. or wr) \(688\) (33%)

no difference in outcomes among patients treated with lobectomy vs limited resection

overall survival

HR : 1.12 (95% CI: 0.93-1.35)

lung cancer-specific survival

HR: 1.24 (95% CI: 0.95-1.61)

Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules (International Early Lung Cancer Action Program)

NSCLC with a diameter of 30 mm or less (stage 1) n=347
10-yr survival
- Sublobar res. (n=53) 85%
- Lobectomy (n=294) 86% \( P = .86 \)

Cancers 20 mm or less in diameter \( P = .45 \)

Sublobar resection and lobectomy have equivalent survival for patients with clinical stage IA NSCLC in the context of computed tomography screening for lung cancer

to determine whether patients with small peripheral NSCLC tumors can safely undergo sublobar resection while maintaining rates of survival and recurrence that are comparable to lobectomy

CALGB 140503
JCOG0802/WJOG4607L
16 papers / 116 (1 meta analysis, 1 RCT) represented the best evidence to answer the clinical question.

There is evidence that wedge resections, compared to segmentectomies and lobectomies, lead to lower survival and higher recurrence rates.

In conclusion, lobectomy is still recommended for younger patients with adequate cardiopulmonary function.
<table>
<thead>
<tr>
<th>questions</th>
<th>depends on</th>
</tr>
</thead>
<tbody>
<tr>
<td>operable patient?</td>
<td>clinical performance</td>
</tr>
<tr>
<td>resectable tumour?</td>
<td>TNM staging</td>
</tr>
<tr>
<td>type of resection?</td>
<td>local invasion</td>
</tr>
<tr>
<td>which approach?</td>
<td>tumour size and location</td>
</tr>
<tr>
<td>therapeutic pathway?</td>
<td>state of the art</td>
</tr>
<tr>
<td>alternatives?</td>
<td>patient’s condition or refusal</td>
</tr>
</tbody>
</table>
The approach depends on tumor size and location:

- **open thoracotomy**
- **vats**
- **uniportal vats**


open or vats* ?

* video-assisted thoracoscopic surgery
intraoperative vascular risks

Watanabe A: 21 pulmonary artery injuries / 185 vats (11%) *
Tatsumi A: 1 death from intraoperative bleeding / 118 vats **

*Watanabe A. et al. Kyobu Geka 2003;56:943-8
Bleeding control
Complex RUL after chemo-radiotherapy

video-assisted thoracoscopic versus open thoracotomy lobectomy in a cohort of 13,619 patients

Nationwide Inpatient Sample database

lobectomy    thoracotomy (n = 12,860)

vats (n = 759)

vats = higher incidence of intraoperative complications
(p = 0.04)


minimal incision = delay in control of bleeding
a national study of **nodal upstaging** after thoracoscopic versus open lobectomy for clinical stage I lung cancer

(nodal upstaging occurs when unsuspected lymph node metastases are found during the final evaluation of surgical specimens)

Danish Lung Cancer Registry

1,513 pts VATS 717 (47%)
thoracotomy 796 (53%)

nodal upstaging 281 pts (18.6%)

**thoracotomy higher**  N1 upstaging  (13.1% vs 8.1%; p<0.001)
                        N2 upstaging  (11.5% vs 3.8%; p<0.001)

no difference in OS between VATS and thoracotomy

(hazard ratio, 0.98; 95% confidence interval, 0.80 to 1.22, p=0.88).

video-assisted thoracic surgery for lung cancer: republication of a systematic review and a proposal by the guidelines committee of the Japanese Association for Chest Surgery 2014

VATS lobectomy by an experienced surgeon may be considered and applied to patients with clinical stage I NSCLC, however, well-established evidence is lacking. VATS showed better or at least equivalent outcomes regarding intra- or postoperative complications compared with thoracotomy, with less invasiveness. Long-term survival by VATS lobectomy was suggested to be at least equivalent, although there is a lack of evidence (Recommendation grade: Level C1).

uniportal vats

Gonzales-Rivas D. WCLC 2016
Uniportal robotic platform
### Surgical Resection of Lung Cancer - Standard of Care

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>T-stage</th>
<th>N-stage</th>
<th>M-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA1</td>
<td>early IA1</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA2</td>
<td>early IA2</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA3</td>
<td>early IA3</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB1</td>
<td>stage IB1</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB2</td>
<td>stage IB2</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB3</td>
<td>stage IB3</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II1</td>
<td>stage II2</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II2</td>
<td>stage II3</td>
<td>T3-4</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>II3</td>
<td>stage II4</td>
<td>T3-4</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IV A-B</td>
<td>stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

#### Stage I & II Tumours
- surgery
- open or vats
- lobar or sublobar?
surgical resection of lung cancer - standard of care

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Tumor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>IA 1 T1a N0 M0</td>
<td>( \leq 1 \text{ cm} )</td>
</tr>
<tr>
<td></td>
<td>early IA 2 T1b N0 M0</td>
<td>( &gt;1 \text{ to } \leq 2 \text{ cm} )</td>
</tr>
<tr>
<td></td>
<td>IA 3 T1c N0 M0</td>
<td>( &gt;2 \text{ to } \leq 3 \text{ cm} )</td>
</tr>
<tr>
<td>IB</td>
<td>T2a N0 M0</td>
<td>( &gt;3 \text{ to } \leq 4 \text{ cm} )</td>
</tr>
<tr>
<td>IIA</td>
<td>T2b N0 M0</td>
<td>( &gt;4 \text{ to } \leq 5 \text{ cm} )</td>
</tr>
<tr>
<td>IIB</td>
<td>T3 N0 M0</td>
<td>( &gt;5 \text{ to } \leq 7 \text{ cm} )</td>
</tr>
<tr>
<td>early</td>
<td>T1a-c N1 M0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2a-b N1 M0</td>
<td></td>
</tr>
</tbody>
</table>

### Stage I & II Tumours
- surgery
- open or VATS
- lobar or sublobar?
<table>
<thead>
<tr>
<th>Stage</th>
<th>IA1 T1a N0 M0 (≤1 cm)</th>
<th>IA2 T1b N0 M0 (&gt;1 to ≤2 cm)</th>
<th>IA3 T1c N0 M0 (&gt;2 to ≤3 cm)</th>
<th>T2a N0 M0 (&gt;3 to ≤4 cm)</th>
<th>T2b N0 M0 (&gt;4 to ≤5 cm)</th>
<th>T3 N0 M0 (&gt;5 to ≤7 cm)</th>
<th>T1a-c N1 M0</th>
<th>T2a-b N1 M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIA</td>
<td>T2b N0 M0 (&gt;4 to ≤5 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIB</td>
<td>T3 N0 M0 (&gt;5 to ≤7 cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>T1a-c N1 M0</td>
<td>T2a-b N1 M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Stage I & II Tumours**
- Surgery
- Open or VATS
- Lobar or sublobar?
<table>
<thead>
<tr>
<th>questions</th>
<th>depends on</th>
</tr>
</thead>
<tbody>
<tr>
<td>operable patient?</td>
<td>clinical performance</td>
</tr>
<tr>
<td>resectable tumour?</td>
<td>TNM staging</td>
</tr>
<tr>
<td>type of resection?</td>
<td>local invasion</td>
</tr>
<tr>
<td>which approach?</td>
<td>tumour size and location</td>
</tr>
<tr>
<td>therapeutic pathway?</td>
<td>state of the art</td>
</tr>
<tr>
<td>alternatives?</td>
<td>patient’s condition or refusal</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>DECIDED</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
state of the art ? – controversial situations

stage III-N2
surgery or not ?
upfront surgery or induction ?
risks ?
locally advanced –T3/4
surgery ?

stage IIA :
 T4 N0 M0
locally advanced
 T3-4 N1 M0
 T1a-2b N2 M0

is there a role for surgery in locally advanced nsclc ?
what we know from evidence based medicine in N2 disease

- dramatic benefit with *induction chemotherapy* compared to surgery alone in two small-scale studies [Roth, Rosell, 1994]
- no benefit in large European randomized study in stage IIIA category [Depierre, 2002]
- stage IIIA benefits from *adjuvant chemotherapy* following "complete resection" [Arriagada, 2004; Douillard, 2006]
- nothing on *radiotherapy* (Lung-ART still ongoing)
- nothing on *surgery*
N2 disease – paradigms and opinions

- Mediastinal downstaging from induction is the most powerful positive prognostic factor for survival after surgery [Betticher, 2003; Albain, 2009]
- RT should be considered the preferred locoregional treatment for pts with stage IIIA-N2 nsclc responders to induction ct [Van Meerbeck, 2007]
- Good candidates for surgery may still be appropriately managed by using resection rather than radiation [Vansteenkiste, 2007]
- The role of surgery is not clearly defined [Roy and Donington, 2007]

No standard of care
outcome of surgery versus radiotherapy after induction treatment in patients with N2 disease: systematic review and meta-analysis of randomised trials

main outcome = survival

805 publications → final 6 randomised trials (868 patients)
- 4 trials, patients randomised to surgery after chemotherapy
  \[ \text{HR} = 1.01 \ (95\% \ CI \ 0.82 \ 1.23; \ P = 0.954) \]
- two trials, patients randomised to surgery after chemo-radiotherapy
  \[ \text{HR} = 0.87 \ (0.75 \ 1.01; \ P = 0.068) \]
overall hazard ratio of all pooled trials = 0.92 (0.81 1.03; P = 0.157).

in trials where patients received surgery as part of trimodality treatment, the overall survival was better than chemo-radiotherapy alone

surgery versus radiotherapy after induction treatment in patients with N2 disease

Favours surgery

Favours radiotherapy

By courtesy of  PJ McElnay and E. Lim
locally advanced nsclc are not "surgical", an evolving paradigm?

locally advanced T3-4
superior sulcus tumor
induction ct-rt and surgical resection for superior sulcus nsclc

<table>
<thead>
<tr>
<th>author</th>
<th>year</th>
<th>no.</th>
<th>R0 (%)</th>
<th>pCR (%)</th>
<th>5-yr os (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusch</td>
<td>2007</td>
<td>80</td>
<td>76</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>Marra</td>
<td>2007</td>
<td>29</td>
<td>94</td>
<td>nr</td>
<td>46</td>
</tr>
<tr>
<td>Kunitoh</td>
<td>2008</td>
<td>57</td>
<td>51</td>
<td>16</td>
<td>56</td>
</tr>
<tr>
<td>Kappers</td>
<td>2009</td>
<td>22</td>
<td>22</td>
<td>62</td>
<td>37</td>
</tr>
</tbody>
</table>

selected centers!
<table>
<thead>
<tr>
<th>yr</th>
<th>pers.</th>
<th>MDA</th>
<th>Toronto</th>
</tr>
</thead>
<tbody>
<tr>
<td>induction</td>
<td>none, ct</td>
<td>none</td>
<td>ct-rt</td>
</tr>
<tr>
<td>surg. technique</td>
<td>en bloc</td>
<td>intralesional</td>
<td>en bloc</td>
</tr>
<tr>
<td>pts</td>
<td>34</td>
<td>31</td>
<td>48</td>
</tr>
<tr>
<td>partial vert.</td>
<td>28</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>total vertebr.</td>
<td>6</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>R0 res. (%)</td>
<td>88</td>
<td>56</td>
<td>88</td>
</tr>
<tr>
<td>mortality (%)</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5-yr surv. (%)</td>
<td>24</td>
<td>27</td>
<td>61</td>
</tr>
</tbody>
</table>

* unpublished
<table>
<thead>
<tr>
<th>questions</th>
<th>depends on</th>
</tr>
</thead>
<tbody>
<tr>
<td>operable patient?</td>
<td>clinical performance</td>
</tr>
<tr>
<td>resectable tumour?</td>
<td>YES</td>
</tr>
<tr>
<td>type of resection?</td>
<td>TNM staging</td>
</tr>
<tr>
<td>which approach?</td>
<td>YES</td>
</tr>
<tr>
<td>therapeutic pathway?</td>
<td>local invasion</td>
</tr>
<tr>
<td>alternatives?</td>
<td>DECIDED</td>
</tr>
<tr>
<td></td>
<td>tumour size and location</td>
</tr>
<tr>
<td></td>
<td>state of the art</td>
</tr>
<tr>
<td></td>
<td>patient’s condition or refusal</td>
</tr>
</tbody>
</table>
### stage I tumours (TNM 8th edition)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Grade</th>
<th>T descriptor</th>
<th>N descriptor</th>
<th>M descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>1</td>
<td>T1a N0 M0</td>
<td>(≤1 cm)</td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>IA2</td>
<td>T1b N0 M0</td>
<td>(&gt;1 to ≤2 cm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IA3</td>
<td>T1c N0 M0</td>
<td>(&gt;2 to ≤3 cm)</td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td></td>
<td>T2a N0 M0</td>
<td>(&gt;3 to ≤4 cm)</td>
<td></td>
</tr>
</tbody>
</table>

**Potential to be cured with surgery... alone**

**Stereotactic ablative radiotherapy?**

![Image of CT scan showing radiation therapy treatment plan](image-url)
better survival and quality of life than other treatments?

sbrt = on-site destruction
surgery = extirpation
19 / 318 papers provided the best evidence to answer the question.

Wedge resection and SABR are both reasonable alternatives to lobectomy in high-risk surgical patients.

SABR: reduced local recurrence compared to wedge resection (4 vs 20%; P = 0.07) and should be considered when a wedge resection is planned due to anatomical location and size of the primary tumour in a patient who is high-risk for surgery.

From Mueller, WCLC 2016
recommendations

• ESMO

• BTS-SCTS
  Lim E, et al. Thorax 2010;65:iii1-iii27

• ACCP

offer radical treatment without further mediastinal lymph node sampling if there is no significant uptake in normal sized mediastinal lymph nodes on PET-CT scanning. [C]
evaluate PET positive mediastinal nodes by further mediastinal sampling. [C]
when obtaining diagnostic and staging samples, consider the adequacy of these in the context of selection of patients for targeted therapy. [D]
consider EBUS/EUS-guided TBNA to stage the mediastinum. [C]
confirm negative results obtained by TBNA and EBUS/EUS-guided TBNA by mediastinoscopy and lymph node biopsy where clinically appropriate. [C]

adequate TNM staging = the right treatment to the right patient

offer patients with T3N0–1M0 disease radical treatment. [D]
consider selected patients with T4N0–1M0 disease for radical multimodality treatment. [D]
consider surgery as part of multimodality management in patients with T1–3N2 (non-fixed, non-bulky, single zone) M0 disease. [B]
avoid pneumonectomy where possible by performing bronchoangioplastatic resection or non-anatomical resection. [C]
consider patients with moderate to high risk of postoperative dyspnoea for lung parenchymal sparing surgery. [D]
consider bronchoangioplastatic procedures in suitable patients to preserve pulmonary function. [D]
consider patients with limited pulmonary reserve for sublobar resection as an acceptable alternative to lobectomy. [B]
perform systematic nodal dissection in all patients undergoing resection for lung cancer. [A]
remove or sample a minimum of six lymph nodes or stations. [D]
surgical resection remains the primary and preferred approach to the treatment of stage I and II nsclc lobectomy or greater resection remains the preferred approach to T1b and larger tumors every patient should have systematic mediastinal lymph node sampling at the time of curative intent surgical resection, and mediastinal lymphadenectomy can be performed without increased morbidity perioperative morbidity and mortality are reduced and long-term survival is improved when surgical resection is performed by a board-certified thoracic surgeon

recommendations

- a pre-surgical pathological diagnosis

- surgical resection for patients with a non-centrally located resectable tumour and absence of nodal metastasis on both CT and PET images [I, A]

- pathological confirmation for patients with suspect mediastinal lymph node metastasis on CT or PET images (unless bulky) [I, A]

- needle aspiration under endobronchial or endoscopic ultrasound guidance is the preferred first technique for pathological confirmation [I, A]

- before considering surgical resection, precise assessment of cardiac and pulmonary function is necessary to estimate risk of operative morbidity [III, A]

comorbidities should be evaluated and optimised before surgery [III, A]

- surgery should be offered to patients with stage I and II NSCLC who are willing to accept procedure-related risks [III, A]

- anatomical resection (lobectomy) is preferred over lesser resections such as wedge or segment resection [I, A]

- sub-lobar resection is generally considered acceptable for pure GGO lesions or adenocarcinomas in situ or with minimal invasion [III, B]

Lobectomy is still considered the standard surgical treatment of tumours ≤2 cm in size that have a solid appearance on CT [II, B]

- lymph node dissection should conform to IASLC specifications for staging [III, A]

- either open thoracotomy or VATS access can be utilised as appropriate to the expertise of the surgeon [III, A]