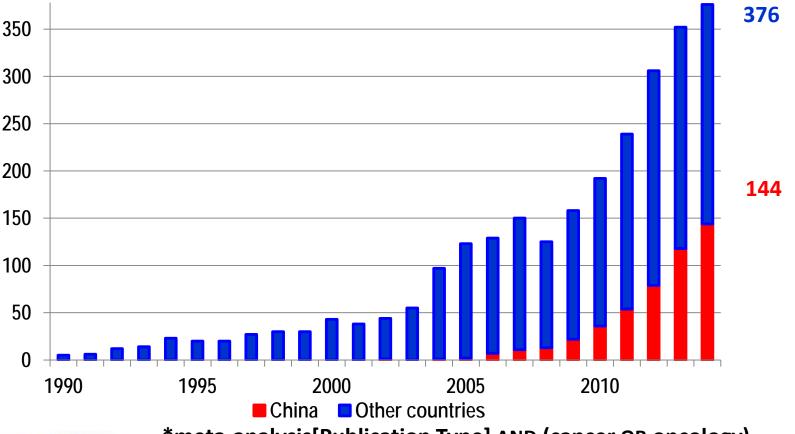


santé et de la recherche médicale

Quality of meta-analyses and why they sometimes lead to different conclusions

Jean-Pierre Pignon, MD, PhD


Service de Biostatistique et d'Epidémiologie, Ligue Nationale Contre le Cancer metaanalysis platform, Gustave Roussy Cancer Campus,

CESP, Inserm U1018, Paris Sud & Paris-Saclay University, Villejuif, France

Conflicts of Interest: none

Meta-analyses of randomized trials in oncology*

*meta-analysis[Publication Type] AND (cancer OR oncology)
AND (randomised clinical trial OR RCT) AND China

Meta-analyses of randomized trials in oncology

- Increase in number (376 publications in 2014)
- More often overlapping i.e. evaluating same intervention
- Quality varies
- There is no good meta-analysis without systematic review
- Most use time dependent endpoint

Overlapping meta-analyses (MAs) (from Siontis et al. BMJ 2013;347)

- Survey of a sample of 73 MAs published in 2010 on effectiveness of a medical intervention, identified 138 other MAs of the same intervention until Feb 2013
- 67% (49/73) had at least one overlapping MA,
 50% had 2 and 5% had 8 or more
- Among the 49 interventions with more than 2 MAs, 17 had at least one author in common for at least 2 MAs: corresponding either to an update (7), a partial overlap (9), or an exact duplicate (1)

Example: Chemotherapy in locally advanced head and and neck squamous cell carcinoma

- 35 meta-analyses (17 papers) by 13 groups between 1980 and 2015 with 1 to 6 meta-analyses by paper
- Three groups published 8 papers, including 2 updates and 2 partial overlap
- 14 questions according to timing, tumor site, and type of chemo
- 11 questions related to adding chemo to locoregional treatment (LRT)
- From broad questions "adding chemo to LRT" (87 RCTs)
 to very specific questions "adding induction chemo before surgery in
 oral cancer" (2 RCTs)

Algorithm to interpret discordant systematic reviews (Jadad et al. CMAJ 1997)

Pragmatic guide to interpret discordant systematic reviews Two steps:

- Are the reviews valid? Major flaws → unsuitable in guiding decision
- 2. Are the differences among the discordant reviews important? "A decision maker may consider differences between 2 reviews to be unimportant if the estimated treatment effects are of different magnitude but in the same direction, and are statistically significant and clinically important"

Quality of meta-analyses publications

- Several scales:
 - Oxman & Guyatt index (10 items),
 - AMSTAR (11 items.)
 - ROBIS (≥21 items)
- To be interpreted with caution: failure in few items may be sufficient to disqualify a meta-analysis (MA)
- Different from recommendations for publication (PRISMA)
- Protocol and trial quality evaluation are systematic in Cochrane review hence Cochrane reviews are better than other meta-analyses
- Individual patient data MA is better than aggregate data MA

Factors related to quality of meta-analyses

- Protocol, statistician & clinician authorship
- Journal with high impact factor, with peer review
- Quality of trials search: no language restriction, search of grey literature (abstract, unpublished RCT) through meeting proceedings and trial registries
- Detailed evaluation of trial quality
- PRISMA flow chart
- Use of hazard ratio and not survival rate or median survival ratio to estimate effect on survival endpoint

Do the overlapping MAs ask the same question?No

- Select "the meta-analysis closest to the question to be solved " (Jadad et al); e.g., induction chemo in head & neck cancer (HNC): any chemo, platin-based or 5FU-platin?
- But meta-analysis that "considers multiple, ..., available treatment options for the same conditioncan offer more complete pictures of the evidence" (Siontis et al)
 - e.g., addition of chemo to loco-regional treatment in HNC, study of best timing by direct and indirect comparisons; network MA of locoregional and systemic treatment in HNC

Do the meta-analyses ask the same question?

<u>Yes</u>

similar conclusions

- Duplicate publications of the same MA (compare authors' name)
- Meta-analysis update → When to update MA?
 - » Quantitative methods proposed by Moher et al (Cochrane DSR 2008)
 - » Approximate rule: <10% new data, update not useful, except if contradictory results</p>

discordant conclusions

→ include the same trials?

Do meta-analyses include the same trials?

Yes: → same quality? Select the meta-analysis with the highest quality

No: → same selection criteria? Select the meta-analysis with the largest number of trials, taking into account the quality of trials and meta-analyses

Platin-5FU vs. Taxane-Platin-5FU induction chemo : same overall conclusion

	Number of	_	
Trials	Patients in survival	Type of data	Parameters for survival
	analysis		
3	1 241	Aggregated	Risk ratio 3-year surv. rate
5	1 772	Individual patient	Hazard ratio
4	1 454	Aggregated	Hazard ratio
5	1 765	Aggregated	Hazard ratio
	3 5 4	Trials Patients in survival analysis 3 1 241 5 1 772 4 1 454	Trials Patients in survival Type of data analysis 3 1 241 Aggregated 5 1 772 Individual patient 4 1 454 Aggregated

Why MA sometimes lead to different conclusions?

- Question studied, number and quality of RCTs are the main factors to explain different results in overlapping MAs (systematic review)
- Data collection, in particular for time dependent outcome (OR vs. HR) may explain some differences
- Statistical methods may explain some differences, for instance when the study lacks power, some significant results with fixed effect model may become non significant with random effect model
- Importance of sensitivity analyses for the robustness of the conclusion
- Same data + same methods → same results, but their interpretation may differ

Conclusions and recommandations (1)

- Duplicate meta-analyses are useful, in particular if concerns about existing meta-analysis (MA), but too much duplication is research waste
- Meta-analyses should be updated only when new evidence may affect the previous conclusion
- Investigators should registered meta-analyses (PROSPERO), and search MA registries before starting a new MA and at the time of its publication

Conclusions and recommandations (2)

- Investigators should provide their reasons for doing a new meta-analysis (MA) and discuss the results of similar meta-analyses in their publication
- MA publications should follow PRISMA recommendations
- Editors and reviewers should promote registration, use PRISMA and request investigator to take overlapping meta-analyses into account

References

- Siontis KC, et al. Overlapping meta-analyses on the same topic: survey of published studies. BMJ 2013;347:f4501.
- Jadad AR, et al. A guide to interpreting discordant systematic reviews. CMAJ 1997;156:1411-6.
- Oxman AD. Checklist for review articles. BMJ 1994;309:64.
- Shea B, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Method 2007;7:10.
- Whiting P. et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 2016;69:225.
- Auperin A et al. Critical review of meta-analyses of randomized clinical trials in hepatogastroenterology. Aliment Pharmacol Therap 1997;11:215,.
- Brignone M, et al. Critical review of meta-analyses of randomized controlled trials (RCTs) studying lung cancer treatment: assessment of their quality. J Thorax Oncol 2007;2 (Suppl 4): S384,.
- Fleming PS, et al. Systematic reviews published in higher impact clinical journals were of higher quality . J Clin Epidemiol 2014;67:754.
- Michiels S, et al. Meta-Analysis when only the median survival times are known: a comparison with individual patient data results. Int J Technol Assess Health Care 2005;21:119
- Jadad AR, et al. Methodology and reports of systematic reviews and meta-analyses: a comparison of Cochrane reviews with articles published in paper based journals. JAMA. 1998;280:278-280,
- Moher D, et al. When and how to update systematic reviews. Cochrane DSR 2008;1:MR000023.
- Moher D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- Stewart LA, et al Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. JAMA 2015;313:1657

Back-up slides

Overlapping MA: Jadad algorithm to interpret discordant systematic review (CMAJ 1997)

Table 1: Sources of discordance among meta-analyses

Clinical question

Populations of patients

Interventions

Outcome measures

Settings

Study selection and inclusion

Selection criteria

Application of the selection criteria

Strategies to search the literature

Data extraction

Methods to measure outcomes

End points

Human error (random or systematic)

Assessment of study quality

Methods to assess quality

Interpretations of quality assessments

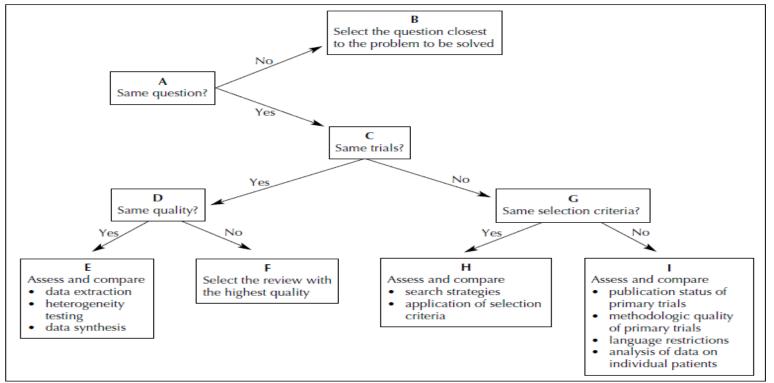
Methods to incorporate quality assessments in review

Assessment of the ability to combine studies

Statistical methods

Clinical criteria to judge the ability to combine studies

Statistical methods for data synthesis



Overlapping MA: Jadad algorithm to interpret discordant systematic review (CMAJ 1997)

Table 2: Types of discordance			
Туре	Example		
Results			
Direction of effect	One review favours the experimental treatment and another favours the control treatment		
Magnitude of effect	One review suggests that the intervention results in a 30% reduction in mortality and another suggests that it results in a 5% reduction in mortality		
Statistical significance	One review shows a statistically significant difference between the experimental and the control treatments and another review shows a nonsignificant difference between them		
Interpretation of the results			

Overlapping MA: Jadad algorithm to interpret discordant systematic review (CMAJ 1997)

Acknowledgement

