Unplanned versus pre-specified subgroup analysis reporting

Doug Altman

Centre for Statistics in Medicine
University of Oxford

Conflicts of interest – None

Subgroup analyses

"Properly performed, analysis of subgroups can yield useful insights into therapy; unfortunately, many commonly used approaches are often uninformative or misleading."

[Yusuf et al, *JAMA* 1991]

Some questions

- What are (in)appropriate statistical approaches?
- How often is an appropriate method used?
- How good is current reporting?
- How does oncology compare with other specialties?
- What is good practice?

Main subgroup analysis strategies in RCTs

- Treatment effect in subset of the participants (e.g. diabetics)
 - Disregard the others (e.g. non-diabetics)
- Treatment effects separately for 2 or more complementary subsets of participants (e.g. by diabetes; by cancer stage)
 - Separate analyses (2+ P values)
- Compare treatment effects across complementary subgroups
 - test of interaction
 - One analysis (one P value)

Main subgroup analysis strategies in RCTs

- Treatment effect in subset of the participants (e.g. diabetics)
 - Disregard the others (e.g. non-diabetics)
- Treatment effects separately for 2 or more complementary subsets of participants (e.g. by diabetes; by cancer stage)
 - Separate analyses (2+ P values)
- Compare treatment effects across complementary subgroups
 - test of interaction
 - One analysis (one P value)

Published subgroup analyses

- Subgroup analyses should be pre-planned
 - Frequent discrepancies between trial protocols and subsequent publications
- Even prespecified subgroup analyses lack power
 - So most significant results will be false positives
- Results of all subgroup analyses should be reported
 - Publishing only significant results magnifies problems
 - Indicate whether pre-specified

BMJ 2014;349:g4539 doi: 10.1136/bmj.g4539 (Published 16 July 2014)

Page 1 of 11

RESEARCH

Subgroup analyses in randomised controlled trials: cohort study on trial protocols and journal publications

[Kasenda et al, BMJ 2014]

Clinical discipline	No. of	No. (%)
	trials	pre-planned
Oncology	155	42 (27%)
Cardiovascular	108	49 (45%)
Infectious disease	87	27 (31%)
Endocrinology	62	15 (24%)
Neurology	61	24 (39%)
Other	421	95 (23%)

[Kasenda et al, BMJ 2014]

An example of subgroup discrepancies

Outcome: time to progression or death

Subgroup analyses:

Protocol: baseline disease severity

<u>Publication</u>: duration of previous treatment*,

type of previous treatment*,

blood count*,

disease severity

*Described explicitly as pre-specified despite not appearing in the protocol

RESEARCH Open Access

No improvement in the reporting of clinical trial subgroup effects in high-impact general medical journals

Nicole B. Gabler^{1*}, Naihua Duan², Eli Raneses¹, Leah Suttner^{1,3}, Michael Ciarametaro⁴, Elizabeth Cooney¹, Robert W. Dubois⁴, Scott D. Halpern^{1,5} and Richard L. Kravitz⁶

	No. of trials	Reported subgroup analyses	Used appropriate method
All trials	437	270 (62%)	185 (69%)

	No. of trials	Reported subgroup analyses	Used appropriate method
All trials	437	270 (62%)	185 (69%)
Cancer	59	45 (76%)	24 (53%)

Cancer was 2nd worst of 9 medical areas studied

	No. of trials	Reported subgroup analyses	Used appropriate method
All trials	437	270 (62%)	185 (69%)
Cancer	59	45 (76%)	24 (53%)
Cardiovascular	101	73 (72%)	63 (86%)

Cancer was 2nd worst of 9 medical areas studied

Bad approaches

- Separate P values for each subset (or ignoring one subset)
- Post hoc comparison of subgroups based on observed results
 - i.e. not pre-planned
- Comparison of subset of active group with whole comparison group
- Subgroup defined by variable not known at randomisation and possibly influenced by treatment ("improper subgroups")
 - e.g. compliance, early clinical response
- All the above methods can be extremely misleading
- Pre-specifying doesn't guarantee an appropriate analysis

Heterogeneity of treatment effect - a better approach [Kent et al, *Trials* 2010]

 Conventional subgroup analyses do not account for the fact that patients have <u>multiple</u> characteristics simultaneously that affect the likelihood of treatment benefit

 A good approach is to estimate treatment effect in relation to multivariable risk score (risk stratification)

Reporting subgroup analyses

Methods

- Prespecified subgroup analyses (as in protocol)
- Postulated direction of effect
- Statistical method

Results

- Estimated effect size (with CI) in each subgroup
- Test of interaction (estimate of relative effect; P value)

Carboplatin and weekly paclitaxel doublet chemotherapy compared with monotherapy in elderly patients with advanced non-small-cell lung cancer: IFCT-0501 randomised, phase 3 trial

Elisabeth Quoix, Gérard Zalcman, Jean-Philippe Oster, Virginie Westeel, Eric Pichon, Armelle Lavolé, Jérôme Dauba, Didier Debieuvre, Pierre-Jean Souquet, Laurence Bigay-Game, Eric Dansin, Michel Poudenx, Olivier Molinier, Fabien Vaylet, Denis Moro-Sibilot, Dominique Herman, Jaafar Bennouna, Jean Tredaniel, Alain Ducoloné, Marie-Paule Lebitasy, Laurence Baudrin, Silvy Laporte, Bernard Milleron, on behalf of Intergroupe Francophone de Cancérologie Thoracique

Summary

Background Platinum-based doublet chemotherapy is recommended to treat advanced non-small-cell lung cancer (NSCLC) in fit, non-elderly adults, but monotherapy is recommended for patients older than 70 years. We compared a carboplatin and paclitaxel doublet chemotherapy regimen with monotherapy in elderly patients with advanced NSCLC.

Lancet 2011; 378: 1079-88

Published Online

August 9, 2011

01:10 1016/001/0

Quoix et al, Lancet 2011

Good practice

- Pre-specify a (very) few planned subgroup analyses in trial protocol
 - Preferably with rationale and direction of postulated difference
- Use only variables known at baseline
- Use interaction analysis or multivariable risk score
- Indicate all subgroups analyses undertaken
 - and whether prespecified or post hoc
- Interpret subgroup findings very cautiously
 - Exploratory analyses are good for hypothesis generating
 - Even pre-planned analyses may be misleading

Some key references

Altman DG. Subgroup analyses in randomized trials: more rigour needed. *Nature Rev Clin Oncol* 2015; 12: 506-7.

Gabler NB et al. No improvement in the reporting of clinical trial subgroup effects in high-impact general medical journals. *Trials* 2016; 17: 320.

Sun X et al. Credibility of claims of subgroup effects in randomised controlled trials: Systematic review. *BMJ* 2012; 344: e1553.

Sun X et al. How to use a subgroup analysis: Users' guide to the medical literature. JAMA 2014; 311: 405-411.

Yusuf S et al. Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. *JAMA* 1991; 266: 93-8.

Zhang S *et al.* Subgroup analyses in reporting of phase III clinical trials in solid tumours. *J Clin Oncol* 2015; 33: 1697-1702.