Metabolomics in cancer, with a focus on breast cancer

Angelo Di Leo
Christopher Hart
Hospital of Prato, Istituto Toscano Tumori, Italy
Introduction

- Metabolomics: the study of metabolites as inference of cell processes and biological systems.

- In cancer cells, metabolic pathways are significantly altered, leading to detectable downstream changes in metabolites produced.

- The host immune response can also vary considerably.

- Combined, this offers a picture of both the tumour phenotype and the host’s local and systemic response.
Introduction

- A range of potential applications
 - Novel metabolite discovery
 - Early diagnosis
 - Prognostics
 - Measurement of residual disease
 - Predictor or early detector of toxicity

- Currently still in experimental stage
Outline

- Metabolomics as an ‘omics’ science
- Cancer metabolism
- Metabolomic techniques and Data Analysis
- Metabolomics of cancer– uncovering the fingerprint
- Clinical application - patterns and dynamic changes to predict prognosis
Metabolomics as an omics science

- Several ways to assess the identity of a cell
 - IHC of histopathologic sample – protein expression
 - Genes - sequencing
 - RNA – Gene expression profiling
 - Proteins
 - Output from cells - metabolites
Metabolomics as an omics science

- **Genome** – 25000 genes
- **Transcriptome** - RNA
- **Proteome** – 100000 proteins
- **Phenotype**

Metabolome
- 10000 metabolites
Metabolomics as an omics science

Metabolome

Normal cellular activity

Intrinsic influences: age, sex, race, weight, comorbidities

Extrinsic influences: diet and fasting state, sleep patterns, exercise, drugs, toxins,
Cancer metabolism

- Cancer cells have significantly altered metabolism
 - Upregulated glycolysis - Warburg effect
 - Increased phospholipids
 - Altered pyruvate and fatty acid synthesis
 - Altered signaling pathways

- Reflected in the pool of metabolites
Cancer metabolism – ‘Reverse Warburg’ effect

- Evidence that the aerobic glycolysis occurs in neighbouring stromal fibroblasts (rather than the cancer cells themselves).

- In this theory
 - cancer cells induce metabolic alteration in stroma, via oxidative stress, to become cancer associated fibroblasts (CAF).
 - Stromal cells undergo phenotypic change, become highly catabolic, and secrete pyruvate, lactate and other ‘fuels’.
 - These nutrients are taken up by the malignant cells.

- Thus the microenvironment is harnessed by the cancer as an energy source.
 - May explain cachexia of cancer
Agents that affect cancer cell metabolism

- **Older**
 - Methotrexate – anti folate, dihydrofolate reductase inhibitor
 - 5-Fluorouracil – thymidylate synthase (TS) inhibitor

- **Newer**
 - Capecitabine – 5-FU prodrug
 - Pemetrexed – TS, DHFR inhibitor
 - Bortezomib – proteasome inhibitor

- Potential others – metformin?
Other metabolic changes

- Tumour cells *in vivo* do not act in isolation
 - Influenced by the host response
 - surrounding stroma
 - immune system
 - competing cancer subclonal populations
 - and the same external influences

- All represented in the metabolome
Metabolomics in cancer

Cancer cells

Surrounding stroma

Immune response

Metabolome

Normal cellular activity

Intrinsic influences: age, sex, race, weight, comorbidities

Extrinsic influences: diet and fasting state, sleep patterns, exercise, drugs, toxins,
Techniques

- **Biosamples**
 - tumour tissue
 - serum, urine
 - sweat, saliva, breath, GI secretions, ascites
Techniques

- **Mass spectometry (MS)**
 - High sensitivity, identifies unknown metabolites
 - Destroys the tissue/sample

- **Proton - Nuclear Magnetic Resonance spectroscopy (H-NMR)**
 - Fast, less expensive, higher reproducibility, preserves the sample
 - Less sensitive, unable to identify unknown metabolites, limited availability
Example of 1-D H-NMR spectrum
Analysis

- Supervised
 - Searching for a prespecified panel of metabolites
 - Potential for bias
- Unsupervised
 - Exploratory analysis, open to new discovery
- Huge amounts of data
- Multitude of metabolites
- Superimposed on the sea of normal metabolites from normal processes
Analysis

- A panel or group of metabolites in isolation can make up a tumour metabolic profile.
- The pattern of metabolites represents the metabolomic signature or fingerprint for that sample.
- Recognising meaningful differences between complex spectra, and controlling for the many variables is a significant challenge.
- Complex chemometric techniques and statistical analysis required to detect patterns and allow comparison.
Why bother?

- Preclinical
 - cell lines: pathways and targets

- Clinical: Biomarkers
 - We need to get a better picture of the presence and extent of cancer, what it is doing, and what it might do

- Biopsies are limited: invasive etc.

- Search for easier sampling, which can offer a broader picture
 - Circ free DNA, CTCs, metabolomics
Why bother?

- Theoretical advantages
 - Simple to obtain sample
 - Direct evidence of altered processes, cf evidence of potential processes
 - Includes information from tumour and host
 - Eg. why do some clear CTCs
 - May be predictive for behaviour
Search for biomarkers

- In its simplest form, allows detection of a range of metabolites. Where these differ from normal tissue, a potential biomarker exist.
- Many metabolites correlate with cancer presence – few are in clinical practice as tumour markers.
- Examples
 - Prostate ca – urine
 - Gastric and colon ca – early diagnosis
 - GBM – classifying aggressive phenotype, searching for novel targets
Clinical examples - imaging

- FDG-PET
- MRI with spectroscopy

Analyses have identified numerous metabolites that are altered
 - vary between tumour types
 - but also inconsistent within a single tumour type

Clinical correlation
 - NMR on FNA of breast cancer could predict grade, receptor status, LVI and lymph node status
 - Prospective trial needed to assess any clinical benefit

Theoretical benefit of metabolomics based on serum is the assessment of both tumour and host, which is missed in tissue samples
Uses for metabolomics

- Discovery: Identification of biomarkers
- Prognostics
- Predictors
- Monitoring response
- Surveillance or screening

- Target analysis vs. metabolite profiling
Examples

- In geriatric oncology, metabolomic profiles have differentiated fit, unfit and frail elderly patients with EGFR mutant lung cancer
- Breast cancer
 - Prediction of toxicity
 - Early diagnosis
 - Prognostication: prediction of relapse
Detecting relapse

- Asiago *et al.* analysed serial blood samples of women in surveillance following resection of EBC to test if met profiles could be used to predict relapse earlier than conventional methods.
- 257 samples from 56 breast cancer patients
 - 20 patients relapsed (116 samples)
 - 36 no evidence relapse min 2 years (141 samples)
- Combined NMR and MS to detect a panel relevant metabolites that discriminated relapsed and non relapsed patients.
- Developed a prediction model
 - Predicted relapse over 13 months earlier than clinical methods in 55% of relapsing patients
 - Outperformed other serum biomarker CA 27.29 significantly

In the adjuvant treatment of early breast cancer, many women are treated unnecessarily.

CMF vs. placebo trial (Bonnodonna)
- 22% long term survival with no adjuvant therapy

Standard clinicopathologic risk factors insufficient

Even with sophisticated GEP, a significant proportion of ‘high risk’ patients may not need chemotherapy.
- Paik et al. OncotypeDX

A better biomarker is required
Metabolomic biomarker?

- Residual micrometastatic disease after surgery is cause of relapse, reason for adjuvant therapy.
- Breast cancer cells have altered metabolism, and may also affect local tissue metabolism.
- This remaining population may therefore leave a metabolic signature in the serum.
- Such a signature might offer a stronger prediction of relapse, and need for adjuvant therapy.
Does a signature exist?

- Several trials have shown that serum metabolomic profiles can differentiate metastatic from early breast cancer.
- These trials use defined groups of early and metastatic patients to examine differences in metabolomic signatures and develop a prediction model.
- Tested on a second set of patients to validate model and assess prediction accuracy.
- Discussion of these trials will illustrate how translational studies in metabolomics may be carried out.
Aim
- Detect a difference in metabolic profiles between local and advanced breast cancer
- Use the profiles to develop a risk score
- See if this changed with resection

44 early breast cancer patients
- Serum collected pre and postoperatively

51 metastatic patient serum samples

Further 45 patients with post operative sample to use as a validation series

Revealing a fingerprint

- Generate spectra
 - Different sequences
- Analyse spectra and employ data reduction techniques to allow simple comparison
- Orthogonal Projection to Latent Structure (OPLS)
 - Converts each complex spectrum to a single point on a 2D scatter plot
 - Near complete separation of the early and metastatic groups

A clear metastatic metabolic fingerprint

Can be used to classify the patients – predict early or late

- Support vector machines method
- Prediction ability, assessed with double cross validation, showed that most patients were appropriately assigned, with a discrimination sensitivity 75%, specificity 69% and predictive accuracy 72%
Metabolomic risk

- Development of a metabolomic risk score for early patients
 - Reduce fingerprint further still to a single number
 - Related to the inverse distance from the metastatic cluster
- High metabolomic risk score in the correlated strongly with misclassification as metastatic
- Analysis repeated on the post op set
 - 86% of high preop met risk moved to low met risk with tumour removal
- Results confirmed with validation set
Study features

- A metastatic fingerprint was identified, which was discriminatory.
- Fewer post op patients were classified as high risk than by standard clinicopathological characteristics.
 - Gene expression profiling also classifies more patients as low risk.
- True value could only be conclusively assessed with longitudinal clinical follow up over 10 years.
- Clinical data required, and further validation in other groups.
Jobard et al. compared preoperative sera from women with local disease in situ to sera from women with metastatic disease.

- Training set: 46 preoperative samples and 39 metastatic samples
- Developed a prediction model
- Tested in the validation set: 61 early and 51 metastatic
- Higher discriminating power
- But, no post op samples

Applying to known clinical outcome

- Comparing to an established risk profile is inherently limiting
 - Imperfect comparator
 - Convenient
 - Proof of concept

- Development of a prognostic risk calculator repeated on post op blood samples of women with 5 years clinical follow up.
Tenori et al.

- Biobank from MSKCC
- 90 metastatic patients
 - Generate the metastatic fingerprint
- 80 early patients
 - Post op serum
 - 5 years clinical follow-up data
 - Training set (40 patients – 10 with relapse)
 - Validation set (40 patients – 11 with relapse)
Tenori et al.

- Spectra obtained (CPMG shown)
- Random Forest classification
 - High accuracy 84-87%
- Risk score generated – risk of relapse
- Scores compared to known clinical outcomes in training set – ROC analysis

Cut off for risk score chosen at \(\geq 53 \)
- Sensitivity 90%
- Specificity 67%
- Accuracy 73%

Then applied to the spectra of the validation set, blind to clinical outcome
- AUC 0.824
- Sensitivity 82%
- Specificity 72%
- Predictive accuracy 75%

Trial limitations

- Small numbers
- Only ER negative disease included in the relapse-free cohort
 - ER status could not be determined from spectra
 - This is in contrast to other studies
 - Repeating the study with only ER- pts gave similar results
- Variable time from surgery to blood sample
- Chemotherapy in 79%
 - Potential confounder, esp Her2+ disease.
Metabolites

<table>
<thead>
<tr>
<th>Study</th>
<th>Higher in metastatic BC</th>
<th>Lower in MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oakman</td>
<td>Phenylalanine, glucose, proline, lysine, N-acetyl cysteine</td>
<td>Lipids</td>
</tr>
<tr>
<td>Jobard</td>
<td>Phenylalanine, glutamate, N-acetyl cysteine, mannose, pyruvate, glycerol, acetoacetate, lipids (NS)</td>
<td>Histidine, alanine (NS), betaine(NS)</td>
</tr>
<tr>
<td>Tenori</td>
<td>Glucose, lactate, tyrosine, lipids</td>
<td>Histidine</td>
</tr>
<tr>
<td>Asiago</td>
<td>Tyrosine (NS), lactate (NS)</td>
<td>Histidine formate proline choline, N-acetyl glycine, ketone body</td>
</tr>
</tbody>
</table>

NS = non significant

Concerns

- A complex algorithm is required to convert spectra into an easily comparable form.
- It is unknown if it is picking up the optimal set of characteristics, i.e., capturing the true signature of the cancer.
- Training sets required for each new cohort.
- Applicability and generalisability remain a long way off.
Many things keep metabolomics in the experimental phase.

- Difficulties in sample handling.
- Intra- and inter-patient variablity.
- No standard reference that can take all background variables into account – hence need for a test set at every location and for every population. May never be achieved.
- Complicated machinery with sophisticated technique required. Unlikely to move into standard hospital or commercial labs.
- Difficult to prove superiority over current risk assessment without long prospective randomised trial, which is unfeasible.
Where does its role lie

- For now, clinical application remains in the proof-of-concept stage.
- Scientific exploration continues to improve understanding of tumour biology.
- Should identification of a reasonable panel of individual metabolites be achieved that can add prognostic or predictive value, then this could be incorporated alongside GEP.
- It may prove complimentary to other liquid biopsy techniques – CTCs, CTDNA.
Final note

While this is an interesting area of research and shows promise for the future, there are currently no approved treatment methodologies based on metabolomics.
Thank you!
References

Nguyen ML, Willows B, Khan R, et al. The potential role of magnetic resonance spectroscopy in image-guided radiotherapy. Front. Oncol. 4:91. doi: 10.3389/fonc.2014.00091. Permission for reproduction available under the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/)

Martins D, Beça FF, Sousa B et al. Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma: key events in the progression from an in situ to an invasive breast carcinoma.

References for ESMO E-Module Metabolomics in cancer, with a focus on breast cancer