Molecular mechanisms of the T cell-inflamed tumor microenvironment: Implications for cancer immunotherapy

Thomas F. Gajewski, M.D., Ph.D.

Professor, Departments of Pathology and Medicine
Program Leader, Immunology and Cancer Program of the University of Chicago Comprehensive Cancer Center
Working model of the immunobiology of T cell-inflamed and non-T cell-inflamed tumors

T cell-inflamed

- Chemokines
- CD8⁺ T cells
- Type I IFN signature
- Immune escape: Inhibitory pathways
- Most immunotherapy responders have this phenotype (vaccines, anti-CTLA-4, anti-PD-1)

Non- T cell-inflamed

- Low inflammatory signature
- Absent intratumoral CD8⁺ T cells
- Immune escape: T cell exclusion

Nature Immunol. 2013
Presence of Tregs and expression of PD-L1 and IDO are associated with a CD8$^+$ T cell infiltrate

Lag3 and 4-1BB further define CD8\(^+\) TIL phenotype beyond PD-1 (Egr2 transcriptional targets)

Gate: CD8

![Flow cytometry plots for Spleen and Tumor showing the distribution of Lag3 and PD1 expressions.](image-url)
Lag3^{+}41BB^{hi}PD1^{+} TIL exhibit the most severe reduction in IL-2 production

- Also show defective proliferation
- Blunted Ras pathway activation c/w in vitro anergy
- Express majority of anergy-associated transcripts
- Still make IFN-γ and chemokines (CCL1, CCL22)
- Tumor Ag-specific T cells present in this subset

Fields et al, Science 1996
Zha et al, Nature Immunol. 2006
Zha et al, EMBO Reports. 2008
Zheng et al, JEM 2012

Williams et al., Manuscript in preparation
Interventions aimed at uncoupling negative regulatory mechanisms in T cell-infiltrated melanomas

- **Anergy reversal:** Anti-41BB? Anti-LAG3?
- **Inhibitory receptor blockade:** PD-1/PD-L1 CTLA-4
- **Treg depletion:** Targeting CD25
- **IDO inhibition:** Small molecule inhibitors
- **Anergy reversal:** Anti-41BB? Anti-LAG3?
Combinatorial targeting of CTLA4 ± PDL1 ± IDO results in improved tumor control.
Synergistic permutations markedly increase the number of proliferating IL-2-producing CD8\(^+\) T cells in tumor microenvironment.
Increase in functional T cells within the tumor microenvironment does not require migration of new T cells (FTY720 blockade)

Spranger et al., JITC 2014
Combination immunotherapy clinical trials in metastatic melanoma: anti-CTLA-4 + anti-PD-1 and anti-CTLA-4 + IDOi

Anti-CTLA-4 + anti-PD-1

Anti-CTLA-4 + IDOi

Wolchok et al. NEJM. 2013

ASCO 2014

Numerous additional logical combinations also being pursued.
What approaches can be developed to gain therapeutic efficacy in non-T cell-inflamed tumors?
Model for innate immune sensing of tumors through activation of the host STING pathway by tumor-derived DNA

Woo et al, Immunity. 2014
Intratumoral STING agonists trigger durable rejection in multiple tumors models

CT26
- Control
- ML RR-S2 CDA

4T1

Corrales et al, Manuscript submitted
The host STING pathway is necessary for the therapeutic effect of radiation in vivo.
What are the molecular mechanisms that explain the T cell-inflamed versus non-inflamed tumor microenvironments?

Three major hypotheses

1. **Germline genetic differences at the level of the host**
 - Polymorphisms in immune regulatory genes

2. **Somatic differences at the level of tumor cells**
 - Distinct oncogene pathways activated in different patients
 - Mutational landscape and antigenic repertoire

3. **Environmental differences**
 - Commensal microbiota
 - Immunologic/pathogen exposure history of patients

Currently evaluating these possibilities in melanoma patients and multiple genomics platforms
Melanoma samples segregated according to T cell-inflamed gene expression signature and analyzed for molecular aberrations

T cell/chemokine Signature ABSENT

T cell/chemokine Signature PRESENT
Molecular analysis to identify oncogene pathways mutated/active in non-T cell-inflamed melanoma metastases

- Exome sequencing and pathway analysis collated based on immune phenotype (T cell-inflamed versus non-T cell-inflamed)
- Pathways being identified that are preferentially mutated/activated in non-T cell-inflamed tumors
- Engineering into inducible Tg mouse models for mechanistic experiments, in permutations with active B-Raf and PTEN deletion
- Long-term goal: drugging these pathways could improve immunotherapies in addition to direct effect on tumor cells
Model of how melanoma-intrinsic β-catenin activation prevents host anti-tumor immune response

Spranger et al, Manuscript submitted
Immunotherapy with anti-CTLA-4 + anti-PD-L1 is effective in BrafV600E/PTEN-/- but not BrafV600E/PTEN-/-/CAT-STA mice

Analysis of tumor growth and T cell infiltration

Combination therapy of αCTLA-4 and αPD-L1

4 weeks

every other day

<table>
<thead>
<tr>
<th>Days of therapy</th>
<th>Tumor volume (mm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>1500</td>
</tr>
<tr>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td>12</td>
<td>2500</td>
</tr>
<tr>
<td>14</td>
<td>3000</td>
</tr>
</tbody>
</table>

- αCTLA-4 + αPD-L1
- no therapy

n.s.
What are the molecular mechanisms that explain the T cell-inflamed versus non-inflamed tumor microenvironments?

Three major hypotheses

1. Germline genetic differences at the level of the host
 - Polymorphisms in immune regulatory genes

2. Somatic differences at the level of tumor cells
 - Distinct oncogene pathways activated in different patients
 - Mutational landscape and antigenic repertoire

3. Environmental differences
 - Commensal microbiota
 - Immunologic/pathogen exposure history of patients
Major points

- T cell-inflamed tumor microenvironment may serve as a predictive biomarker for response to immunotherapies
- Mechanism of spontaneous immune response appears to be driven by host STING/IFN-β pathway activated by tumor-derived DNA acquisition by DCs
- STING agonists may provide means to deliberately initiate innate immune inflammation to promote an endogenous T cell response in non-T cell-inflamed tumors
 - Developing human STING agonists for clinical translation
- Molecular mechanisms for T cell exclusion being uncovered
 - Somatic alterations: tumor-intrinsic β-catenin results in loss of DC-mediated T cell priming and recruitment
 - Intestinal microbiome as environmental variable
 - Germline polymorphisms: first SNP identified with minor allele associated with presence of T cell infiltrate
 - Each of these should lead to new therapeutic opportunities
Acknowledgments

Melanoma genomics/microbiome/Germline genetics
- Yuan-yuan Zha
- Stefani Spranger
- Ayelet Sivan
- Kenan Onel
- Eugene Chang
- Functional genomics and Bioinformatics cores

Type I IFNs
- Mercedes Fuertes
- Robbert Spaapen
- Seng-Ryong Woo
- Justin Kline
- Yang-Xin Fu

Genetic melanoma models
- Stefani Spranger
- Ayelet Sivan
- Michael Leung

Uncoupling negative regulation
- Stefani Spranger
- Brendan Horton
- Yuan-yuan Zha
- Jason Williams
- Robbert Spaapen

Innate immune sensing/STING
- Seng-Ryong Woo
- Leticia Corrales
- Mercedes Fuertes
- Kate Fitzgerald
- Glen Barber
- Aduro (Tom Dubensky)

T cell anergy/ChIP-SEQ
- Yan Zheng
- Jason Williams
- Brendan Horton
- Albert Bendelac