Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy and its management, considering also cachexia

Thomas Suter now replaced by Matti Aapro MD

Breast Center, Genolier, Switzerland
Member ESMO supportive care Faculty
Board member and Past-President of MASCC
(Multinational Association for Supportive Care in Cancer)
And Honorary President of AFSOS
(French-speaking Association for Supportive Care)
Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines†

G. Curigliano¹, D. Cardinale², T. Suter³, G. Plataniotis⁴, E. de Azambuja⁵, M. T. Sandri⁶, C. Criscitiello¹, A. Goldhirsch¹, C. Cipolla² & F. Roila⁷, on behalf of the ESMO Guidelines Working Group*
review

Anthracycline cardiotoxicity in the elderly cancer patient: a SIOG expert position paper

M. Aapro¹, C. Bernard-Marty², E. G. C. Brain³*, G. Batist⁴, F. Erdkamp⁵, K. Krzemieniecki⁶, R. Leonard⁷, A. Lluch⁸, S. Monfardini⁹, M. Ryberg¹⁰, P. Soubeyran¹¹ & U. Wedding¹²

¹Institut Multidisciplinaire d’Oncologie, Clinique de Genolier, Genolier, Switzerland; ²Department of Medical Oncology, Institut Claudius Regaud, Toulouse; ³Department of Medical Oncology, Institut Curie/Hôpital René Huguenin, Saint-Cloud, France; ⁴Department of Oncology, McGill University, Montreal, Canada; ⁵Department of Internal Medicine, Maasland Hospital, Sittard, The Netherlands; ⁶Department of Oncology, Jagiellonian University, Krakow, Poland; ⁷Department of Cancer Services and Clinical Haematology, Charing Cross Hospital, London, UK; ⁸Department of Haematology and Medical Oncology, University Hospital of Valencia, Valencia, Spain; ⁹Department of Medical Oncology, Istituto Oncologico Veneto, Padova, Italy; ¹⁰Department of Medical Oncology, Herlev Hospital, Herlev, Denmark; ¹¹Department of Medical Oncology, Institut Bergonié, Bordeaux, France; ¹²Klinik für Innere Medizin II, University Clinic Jena, Jena, Germany
Breast Cancer in Older Adults
Cardiac Toxicity in Breast Cancer

Dr Vivianne Shih, Pharm.D., BCPS, BCOP
Specialist Pharmacist (Oncology)
Learning Objectives

♥ At the end of this short presentation, one should be able to

♥ List the common chemotherapy &/or targeted therapies that can cause cardiotoxicity

♥ Distinguish cardiotoxicity arising from conventional chemotherapy & targeted agents

♥ Discuss the appropriate preventive, monitoring & treatment of cardiotoxicity caused by drugs used in cancer therapy
Overview

♥ Introduction – drugs involved & definition
♥ Mechanism of cardiotoxicity
♥ Risk Factors
♥ Monitoring of cardiotoxicity
♥ Review of trastuzumab-induced cardiotoxicity in elderly
♥ Treatment of chemotherapy-induced cardiotoxicity
Cardiovascular Side Effects of Modern Cancer Therapy

- Arrhythmias
- Hypertension
- Thrombosis
- Myocardial Ischemia
- Impaired myocardial contraction (systolic / diastolic dysfunction)

Cardiotoxicity
Cardiotoxicity of Antineoplastics

<table>
<thead>
<tr>
<th>Category</th>
<th>Effects</th>
<th>Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antitumour antibiotics</td>
<td>Cardiomyopathy, arrhythmias, CHF</td>
<td>Bradycardia, arrhythmias, CHF, MI</td>
</tr>
<tr>
<td>Eg Anthracycline</td>
<td>• Cumulative dose</td>
<td>• Typically reversible, may potentiate anthracycline toxicity</td>
</tr>
<tr>
<td>Microtubule targeting agents</td>
<td>Bradycardia, arrhythmias, CHF, MI</td>
<td>Arrhythmias, heart block, CHF</td>
</tr>
<tr>
<td>Eg Taxanes</td>
<td>• Typically reversible, may potentiate anthracycline toxicity</td>
<td>• Mechanism: Electrolyte abnormalities; endothelial capillary damage</td>
</tr>
<tr>
<td>Alkylating agents</td>
<td>Arrhythmias, heart block, CHF</td>
<td>Cardiac failure, MI</td>
</tr>
<tr>
<td>Eg Cisplatin, Cyclophosphamide</td>
<td>• Mechanism: Electrolyte abnormalities; endothelial capillary damage</td>
<td>• Likely Mechanism: Coronary vasospasm</td>
</tr>
<tr>
<td>Antimetabolites</td>
<td>Cardiac failure, MI</td>
<td></td>
</tr>
<tr>
<td>Eg Fluorouracil</td>
<td>• Likely Mechanism: Coronary vasospasm</td>
<td></td>
</tr>
</tbody>
</table>

Floyd JD et al. JCO 2005;23:7685-7696
Cardiotoxicity Associated with Targeted Therapies

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Incidence (%)</th>
<th>Clinical Characteristics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal Antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>2 – 28</td>
<td>Potentially reversible, significant decline in LVEF</td>
<td>Clinical: Age, preexisting cardiac disease, borderline LVEF before therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment related: prior anthracycline exposure, sequence of chemotherapy exposure</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>1.7 – 3</td>
<td>Not completely defined, systolic dysfunction</td>
<td>Previous anthracycline use</td>
</tr>
<tr>
<td>Tyrosine Kinase Inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lapatinib</td>
<td>1.5 – 2.2</td>
<td>Not completely defined, systolic dysfunction</td>
<td>Not completely defined, perhaps prior anthracycline use</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2.7-11</td>
<td>Possibly reversible, significant decline in LVEF, HF</td>
<td>History of coronary disease</td>
</tr>
<tr>
<td>Imatinib</td>
<td>0.5 – 1.7</td>
<td>Not completely defined, systolic dysfunction</td>
<td>Not completely defined</td>
</tr>
</tbody>
</table>

Wells QS, Lenihan DJ. Prog Cardiovasc Dis 2010;53:140-8
Definition of Cardiotoxicity
Definition of Cardiotoxicity

<table>
<thead>
<tr>
<th>National Cancer Institute</th>
<th>Cardiac Review & Evaluation Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>♥ Toxicity that affects the heart</td>
<td>♥ Cardiomyopathy in terms of ↓ LVEF, either global or more severe in the septum</td>
</tr>
<tr>
<td></td>
<td>♥ Symptomatic HF</td>
</tr>
<tr>
<td></td>
<td>♥ Signs associated with HF, such as S3 gallop, tachycardia or both</td>
</tr>
<tr>
<td></td>
<td>♥ Reduction in LVEF</td>
</tr>
<tr>
<td></td>
<td>‒ ≤ 5% to < 55% WITH OR</td>
</tr>
<tr>
<td></td>
<td>‒ > 10% to < 55% WITHOUT S/Sx of HF</td>
</tr>
</tbody>
</table>
Anthracycline vs Trastuzumab

(1) How does Cardiotoxicity arise?
Anthracycline-induced Cardiotoxicity (AIC)

Top 2B alters the tension of DNA during replication & transcription by breaking, twisting & resealing DNA

Anthracyclines intercalate into DNA

→ forms complex with Top2B

→ inhibits Top2B enzymatic activity

DNA double strand breaks
Anthracycline-induced Cardiotoxicity (AIC)

Injury (days to wk after therapy)
- Troponin I released at time of exposure
- Cell death

Heart compensates & remodelling occurs
- Either short phase or indefinitely
- EF may remain substantially normal

Heart NO longer compensates
- Symptomatic HF ensues

Stage 1

Stage 4
Trastuzumab induced Cardiotoxicity (TIC)

- **Cardiac endothelial cells**
 - \rightarrow Neuregulin 1 (NRG1)

- **Binds to human epidermal growth factor receptor 4**
 - \rightarrow Promotes heterodimerization with HER2

- **Activation of downstream intracellular signalling pathways**
Type I vs Type II Cardiotoxicity

<table>
<thead>
<tr>
<th></th>
<th>Type I Cardiotoxicity (eg anthracycline)</th>
<th>Type II Cardiotoxicity (eg Trastuzumab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical course,</td>
<td>May stabilise, but subclinical damage seems to persist; recurrence in mths or yrs may be related to</td>
<td>High likelihood of complete or near-to-complete recovery upon withdrawal &/or medication</td>
</tr>
<tr>
<td>response to medication</td>
<td>sequential cardiac stress</td>
<td></td>
</tr>
<tr>
<td>Dose dependence</td>
<td>Cumulative; “lifetime” dose-related</td>
<td>Dose-independent</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Free radical formation (?), alcohol metabolite formation (?)</td>
<td>Elimination of HER2-related survival factors</td>
</tr>
<tr>
<td>Ultrastructure</td>
<td>Vacuoles, myofibrillar disarray & dropout, apoptosis & necrosis</td>
<td>With limited exceptions, no apparent ultrastructural abnormalities</td>
</tr>
<tr>
<td>Non-invasive testing</td>
<td>↓ LVEF, global ↓ in wall motion</td>
<td></td>
</tr>
<tr>
<td>Effect of rechallenge</td>
<td>High probability of recurrent dysfunction that progresses toward treatment-resistant CHF</td>
<td>↑ evidence for safety of rechallenge</td>
</tr>
<tr>
<td>Effect of late sequential stress</td>
<td>High likelihood of sequential stress-related cardiac dysfunction</td>
<td>Low likelihood of sequential stress-related cardiac dysfunction</td>
</tr>
</tbody>
</table>
Anthracycline vs Trastuzumab

(2) Risk factors
Risk Factors (AIC)

♥ Therapy-related
 ♥ Type & formulation of anthracyclines
 ♥ Cumulative dose
 ♥ Infusion time (eg IVP or CI)
 ♥ Combination &/or sequence of chemotherapy
 ♥ Prior or concomitant mediastinal RT

Risk Factors (AIC)

♥ Patient-related

♥ Age

♥ Gender (eg females)

♥ Cardiovascular disease (CVD)

♥ Presence of cardiovascular (CV) risk factors

Risk Factors (TIC)

♥ Age > 60 yr

♥ Low baseline LVEF

♥ Prior anthracycline exposure

♥ Current or previous treatment with anti-hypertensive medication

♥ Higher body mass index (> 25kg/m²)

♥ Alcohol intake

♥ HER2 polymorphisms

Risk factors for radiation-associated heart damage include:

- dose >30–35 Gy
- dose per fraction >2 Gy
- large volume of irradiated heart
- younger age at exposure
- longer time since exposure
- use of cytotoxic chemotherapy
- endocrine therapy or trastuzumab
- presence of other risk factors such as diabetes, hypertension, dyslipidaemias, obesity, smoking etc.
ESMO Clinical Practice Guidelines: Recommendations for Cardiotoxicity Monitoring

♥ Periodic monitoring of cardiac function with Decho is suggested especially for anthracyclines & their derivates or monoclonal Ab

♥ Periodic monitoring (every 12 wks) of cardiac function is also suggested for patients receiving monoclonal Ab, esp if prev treated with anthracycline

♥ LVEF reduction of $\geq 20\%$ from baseline despite normal function OR LVEF decline $< 50\%$ necessitate reassessment or discontinuation of therapy & further frequent clinical & echographic checks

Limitations / Imperfections of LVEF

♥ Subjectivity

♥ ↓ LVEF often deemed as being related to offending agent

♥ Unchanged LVEF = Lack of cardiotoxicity?

♥ ↓ LVEF after treatment may be a marker for advanced myocyte damage

Treatment of Chemotherapy-induced Cardiotoxicity
Treatment of anthracyline-induced cardiotoxicity

- Prospective, single centre study (N = 201)
- Patients with LVEF ≤ 45% & absence of any identifiable cause of CMP
- Primary end point: LVEF response to HF therapy
- Treatment: Enalapril &/or carvedilol

<table>
<thead>
<tr>
<th>Responders (%)</th>
<th>1-2</th>
<th>2-4</th>
<th>4-8</th>
<th>6-8</th>
<th>9-10</th>
<th>10-12</th>
<th>>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=75)</td>
<td>64%</td>
<td>28%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Figure 1 Percentage of Responders According to the Time Elapsed From AC Administration and Start of HF Therapy

- Responders: LVEF ↑ up to 50%
- Partial responders: LVEF ↑ at least 10% but < 50%
- Non-responders: LVEF ↑ < 10% & not reach 50%

Cardinale D et al. JACC 2010;55:213-20
Change in LVEF from baseline to rechallenge with trastuzumab

Cardiac Risk Assessment

Cardiac Imaging

Eg Speckle-tracking imaging
Cardiac MRI

Clinical risk factors

Personalised cardiac risk assessment

Biomarkers

Eg troponins, natriuretic peptides

Risk prediction model

Cost effective screening & prevention

MANTICORE trial
Use of conventional HF medications to prevent TIC

Effect of Various Modifying Factors on Risk of Cardiotoxicity

PREVENTION

- Limitation of cumulative dose
- Continuous vs bolus infusion
- Cardioprotectants (Dexrazoxane-Liposomal anthracyclines)
- Concomitant RT & other chemotherapy agents

MODIFIABLE Cardiotoxicity Risk Factors

- Rate of administration
- Cumulative dose (mg/m²)
 - Doxorubicin: 450
 - Daunorubicin: 550
 - Epirubicin: 900

NON-MODIFIABLE Cardiotoxicity Risk Factors

- Gender
- Age
- Genetic Factors

Take home message…

♥ Cardiotoxicity is one of the most important complications arising from cancer treatment

♥ Crucial to have reliable biomarkers to identify high risk patients & initiate prompt treatment when necessary

♥ Clinical endpoints of cardiotoxicity & cardiac monitoring need to be standardised

♥ Multidisciplinary team approach is required
SEE YOU AT
MASCC/ISOO
ANNUAL MEETING ON
SUPPORTIVE CARE IN CANCER
www.mascc.org/meeting
SEE YOU AT
MASCC/IS00
ANNUAL MEETING ON
SUPPORTIVE CARE IN CANCER
www.mascc.org/meeting

AND REMEMBER AFSOS AND TAO
IN PARIS IN THE FALL