CLINICAL RESULTS WITH IMMUNOTHERAPY STRATEGIES IN HEMATOLOGICAL MALIGNANCIES

Paula Rodríguez Otero
University of Navarra
Dr. Rodríguez-Otero disclosures

- Consulting fees: Janssen, Celgene.
- Speaker’s Bureau: Janssen, Celgene, BMS.
- Research grants: Celgene, BMS.
Four major targets for cancer immunotherapy

- Direct targeting of surface tumor antigens:
 - Monoclonal antibodies

- Boosting immune effectors:
 - Adoptive cell therapy

- Activating tumor specific immunity:
 - Vaccins

- Overcoming inhibitory immune suppression:
 - Immunomodulators: IMIDs, Checkpoint inh
Monoclonal antibodies

- **Direct targeting of surface tumor antigens**
 - *Monoclonal antibodies*

- **Boosting immune effectors:**
 - Adoptive cell therapy

- **Activating tumor specific immunity:**
 - *Vaccins*

- **Overcoming inhibitory immune suppression:**
 - *Immunomodulators: IMIDs, Checkpoint inh*
Immunotherapy has changed the clinical course of Lymphomas

Ratio per 100,000*

15
10
9
NHL mortality
8
7
6
5
4
3
2
1
0

Age adjusted to standard USA population in 2000

Cisplatin (1978)
Etoposide (1983)
Fludarabine (1991)
MabThera® (1997)

90Y ibritumomab tiuxetan (2002)
131I tositumomab (2003)
Monoclonal antibodies in Multiple Myeloma

Activation of macrophages
- Antibody-dependent cell-mediated phagocytosis (ADCP)

Activation of natural killer (NK) cells
- Antibody-dependent cellular cytotoxicity (ADCC)

Direct effects
- Alterations in intracellular signalling
 - Inhibition of growth factor receptor function
 - Inhibition of adhesion molecule function

Activation of the complement system
- Complement-dependent cytotoxicity (CDC)

Cell death

Lysis

Signalling cascades

Antigen

Membrane attack complex

C1q

- Elotuzumab (Anti-SLAMF7)
 - Single Agent[^2]: 26% SD
 - Elo + Ld[^3]: 92% ORR & 33m PFS[^1]
 - Ld +/- ELO[^1]: 19.4 vs 14.9 m[^1]

 - Single agent: 30-35% ORR, PFS 3.7m
 - + Len-Dex: 64-75% ORR (inc. Len ref.)

[^5]: Sagar Lonial, ASCO 2015, abstract 8512.
[^6]: Martin et al. ASCO 2014; Abstract 8532.
Eloquent-2 (Elo-Ld vs Ld): Extended PFS and TNT

ORR (ELd vs Ld): 79% vs 66%.
≥VGPR: 32.7% vs 27.9%

PFS (19.4 vs 14.9 m)

- 1-year PFS: 68%
- 2-year PFS: 57%
- 3-year PFS: 41%

TNT (33 vs 21 m)

- TNT: 33 vs 21 m
 HR 0.62 (95% CI 0.50, 0.77)

27% reduction in the risk of disease progression or death

Relative improvement in PFS of 44% at 3 years
Anti CD38 antibodies: Mechanisms of Action

Daratumumab

Direct ON-TUMOR Actions
- CDC: Complement-dependent cytotoxicity
- ADCC: Antibody-dependent cell-mediated cytotoxicity
- ADCP: Antibody-dependent cellular phagocytosis
- Apoptosis

IMMUNOMODULATORY Actions
- Modulation of tumor microenvironment
- Depletion of immuno-suppressive cells
- Increase in cytotoxic & helper T cells

Myeloma Cell Death

Anti CD38 in MM: single agent activity in RRMM

<table>
<thead>
<tr>
<th>Study details</th>
<th>Daratumumab</th>
<th>Isatuximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 studies: GEN501, SIRIUS & combined analysis</td>
<td>First in-human, phase 1 dose escalation</td>
<td></td>
</tr>
<tr>
<td>Patients</td>
<td>Pts with rel/ref MM n=148 (SIRIUS n=42 and GEN501 n=106)</td>
<td>Pts with rel/ref MM N=97</td>
</tr>
<tr>
<td>Dose</td>
<td>16 mg/kg</td>
<td>Dose is not yet defined</td>
</tr>
</tbody>
</table>
| Results | • **ORR 31%** *(36% GEN501 & 29% SIRIUS)*
• Median DOR: 7.6 m
• 1 year OS: 77% / 69%
• Median PFS in the combined analysis: 20m.
• Infusion-related reactions gr 1-2 | • At ≥ 10 mg/kg: **24%**
• Abnormal CA: 44%
• Median DOR: 6.6 m
• IARs: 49%, mostly grade ≤2, 94% during 1st infusion. |

Dara/SAAR are CD38 MoAB showing activity as single agents in RRMM patients

Anti-CD38 MoAb plus Len/dex in RRMM

Daratumumab + Len/Dex vs SAR650984 + Len/Dex

<table>
<thead>
<tr>
<th>Target</th>
<th>CD38</th>
<th>CD38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-agent activity</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| **Study details** | Phase 1/2 dose escalation & expansion
Prior IMiDs: 80%
Pts ref or intolerant to Len excluded | Phase Ib dose escalation trial
Pts rel + ref to IMiD:84% |
| **Patients** | n=32 | n=31 |
| **Results** | **ORR 81%**
(35% CR, 28% VGPR, 19% PR) | **ORR 58%**
(6% sCR, 23% VGPR, 29% PR)
PFS 6.2 months |

Plesner et al. ASH 2014 (Abstract 84); ASH 2015 (Abs 507); Martin et al. ASH 2014 (Abstract 83); oral presentation
Daratumumab-Len-Dex (DRd) vs Len-Dex (Rd) in Relapsed MM - Phase III POLLUX trial (569 Patients)

<table>
<thead>
<tr>
<th>Metric</th>
<th>DRd vs Rd</th>
<th>CR (DRd vs Rd)</th>
<th>ORR (DRd vs Rd)</th>
<th>TTP (DRd vs Rd)</th>
<th>DOR (DRd vs Rd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>63% reduction</td>
<td>43% vs 19%</td>
<td>93% vs 76%</td>
<td>NR vs 18.4</td>
<td>NR vs 17.4 m</td>
</tr>
<tr>
<td>ORR</td>
<td>93% vs 76%</td>
<td>43% vs 19%</td>
<td>93% vs 76%</td>
<td>NR vs 18.4</td>
<td>NR vs 17.4 m</td>
</tr>
<tr>
<td>CR</td>
<td>43% vs 19%</td>
<td>93% vs 76%</td>
<td>43% vs 19%</td>
<td>NR vs 18.4</td>
<td>NR vs 17.4 m</td>
</tr>
<tr>
<td>TTP</td>
<td>NR vs 18.4</td>
<td>NR vs 17.4 m</td>
<td>NR vs 18.4</td>
<td>NR vs 17.4 m</td>
<td>NR vs 17.4 m</td>
</tr>
<tr>
<td>DOR</td>
<td>NR vs 17.4 m</td>
</tr>
</tbody>
</table>

DVd vs Vd in Relapsed MM - Phase III CASTOR trial
Efficacy data: ORR, PFS and TTP

ORR (DVd vs Vd): 83% vs 63%
CR (DVd vs Vd): 20% vs 9%

PFS

- Median PFS: NR
- Median PFS: 7.2 months
- HR: 0.39 (95% CI, 0.28-0.53); \(P < 0.0001 \)

TTP

- Median TTP: NR
- Median TTP: 7.3 months
- HR: 0.30 (95% CI, 0.21-0.43); \(P < 0.0001 \)

MoAbs: Futures perspectives

Bispecific T cell engagers:
BCMA – CD3 phase I trials

Conjugated MoAb:
ABBV-838: MMAE-CS1
GSK2857916: BCMA - MMAF
Conjugated antibodies in Hodgkin disease: Brentuximab Vedotin

Naked antibodies failed to induce objective responses

Conjugated antiCD30 + MMAE (antitubulin agent) = Brentuximab Vedotin

ORR 75%; CR rate 34%
Median PFS 5.6 m
Median DOR for patients in CR: 20.5 m

Younes A et al. JCO 2012
Brentuximab Vedotin: Frontline treatment of DLBCL – Randomized phase II trial

Study objectives: ORR, CR, PFS, OS, safety

Pts with CD30-unselected high-intermediate–risk or high-risk untreated DLBCL; ECOG PS 0-2 (N = 53)

| Brentuximab Vedotin 1.2 mg/kg + Standard R-CHOP x 6 (n = 30) |
| Brentuximab Vedotin 1.8 mg/kg + Standard R-CHOP x 6 (n = 23) |

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All Pts (N = 51)</th>
<th>BV 1.2 mg/kg + R-CHOP (n = 29)</th>
<th>BV 1.8 mg/kg + R-CHOP (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, % (95% CI)</td>
<td>80 (66.9-90.2)</td>
<td>79 (60.3-92.0)</td>
<td>82 (59.7-94.8)</td>
</tr>
<tr>
<td>CR</td>
<td>67 (52.1-79.2)</td>
<td>66 (45.7-82.1)</td>
<td>68 (45.1-86.1)</td>
</tr>
<tr>
<td>PR</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Estimated PFS,* %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mos</td>
<td>79</td>
<td>83</td>
<td>75</td>
</tr>
<tr>
<td>12 mos</td>
<td>65</td>
<td>67</td>
<td>61</td>
</tr>
<tr>
<td>PD or death, %</td>
<td>31</td>
<td>24</td>
<td>41</td>
</tr>
</tbody>
</table>

CR rate comparable in ABC vs GCB DLBCL subtypes (69% vs 65%)

BCMA – MMAF for RRMM (GSK2857916)
Phase I dose escalation trial (n=30)

100% IMID refractory and 90% PI refractory
70% with ≥ 5 prior lines of therapy

Maximum % Change in M-Protein or Free Light Chain

ORR = 8/30 (27%; 95% CI: 12.3%, 45.9%)
 • 1 sCR, 3 VGPR, 4 PR
CBR = 11/30 (37%; 95% CI: 19.9%, 56.1%)

Adoptive cell therapy

Direct targeting of surface tumor antigens

Monoclonal antibodies

Boosting immune effectors:

Adoptive cell therapy

Activating tumor specific immunity:

Vaccins

Overcoming inhibitory immune suppression:

Immunomodulators: IMIDs, Checkpoint inh
Adoptive Cell Therapy – Engineered T cells

Specific antitumor T cells

- CAR T cells
- TCR-engineered T cells

Activation and expansion

Genetically engineer cancer-specific T-cells

Fragmentation of tumour sample and isolation of tumour infiltrating lymphocytes

Transfusion into recipient

References:
1. A cloned TCR conferring tumor recognition is inserted into circulating lymphocytes.

2. Genetically inserted TCRs recognized tumor antigens in the groove of a specific MHC molecule.

3. Activation of the T cells is dependent on the TCR, therefor subject of the same counter regulatory pathways.
CARs are engineered fusion proteins that contain an extracellular antigen-binding domain composed of a single chain variable fragment (scFv) derived from an Ab that confers recognition to a tumor-associated antigen, linked in tandem to intracellular signaling motifs capable of T cell activation (CD3z) and costimulatory molecules, like CD28 or CD137. This construct is then transfected or transduced in patient’s autologous T cells.
CAR T cells vs TCR engineered T cells

<table>
<thead>
<tr>
<th>TCR engineered T cells</th>
<th>CAR T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA - restricted.</td>
<td>Antigen recognition is independent of MHC molecule.</td>
</tr>
<tr>
<td>Accordingly, a limited number of individuals presenting such HLA molecules are eligible for this treatment option.</td>
<td>Not HLA-restricted</td>
</tr>
<tr>
<td>TCR (but not CAR) T cells can recognize intracellular proteins, providing a broader array of potential therapeutic targets</td>
<td>Only extracellular proteins can be recognized (like MoAb)</td>
</tr>
<tr>
<td>Activation of the T cells depends on the TCR</td>
<td>Possibility to insert other genes encoding molecules involved in costimulation, survival, proliferation or inflammation allowing the T cell to avoid inhibitory mechanisms displayed by the tumor</td>
</tr>
<tr>
<td></td>
<td>Massive release of pro-inflammatory cytokines produced by hyperactive CAR T cells.</td>
</tr>
</tbody>
</table>
Autologous CD19 CAR-T in B-ALL

<table>
<thead>
<tr>
<th>Institution</th>
<th>Constructs</th>
<th>Patients</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSKCC(^1-3)</td>
<td>CAR CD19 CD28 CD3ζ retrovirus</td>
<td>46 ref B-ALL Cy or Cy-Flu</td>
<td>CR 82% MRD - : 83% 39% relapsed</td>
</tr>
<tr>
<td>FHCRC(^4)</td>
<td>CAR CD19 41BB CD3ζ retrovirus 1:1 CD4:CD8 ratio</td>
<td>29 patients Cy or Cy-Flu</td>
<td>CR 83%; 100% in Cy+Flu 70% relapsed in Cy group</td>
</tr>
<tr>
<td>CHOP/U Penn(^5-6)</td>
<td>CAR CD19 41BB CD3ζ retrovirus</td>
<td>53 B-ALL ref</td>
<td>ORR 100% MRD - : 85% 38% relapsed</td>
</tr>
<tr>
<td>NCI(^7)</td>
<td>CAR CD19 CD28 CD3ζ lentivirus</td>
<td>21 patients</td>
<td>CR: 70% MRD - : 60% CR 29%</td>
</tr>
</tbody>
</table>

- ORR ≈ 100%
- CR rates: 70 – 80%
- 40%- 70% relapses

CD19 CAR-T in Lymphoma presented ASH 2016

<table>
<thead>
<tr>
<th>Abstract #</th>
<th>Institution</th>
<th>Constructs</th>
<th>Lymphoma</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3026</td>
<td>Penn</td>
<td>CAR CD19 41BB CD3ζ lentivirus</td>
<td>DLBCL (7 GC, nonGC)</td>
<td>ORR 52% CR 38% (no relapse)</td>
</tr>
<tr>
<td>#1100</td>
<td>Penn</td>
<td>CAR CD19 41BB CD3ζ lentivirus</td>
<td>FL</td>
<td>ORR 79% CR 50%</td>
</tr>
<tr>
<td>#1851</td>
<td>Baylor</td>
<td>CAR CD19 41BB CD3ζ retrovirus, CAR CD19 CD28 CD3ζ retrovirus</td>
<td>DLBCL</td>
<td>ORR 75% CR 50%</td>
</tr>
<tr>
<td>#999</td>
<td>NCI</td>
<td>CAR CD19 CD28 CD3ζ lentivirus humanized</td>
<td>DLBCL, MCL, FL</td>
<td>ORR 85% CR 29%</td>
</tr>
<tr>
<td>#4192</td>
<td>Juno</td>
<td>CAR CD19 CD28 41BB CD3ζ lentivirus 1:1 CD4:CD8 ratio</td>
<td>DLBCL, MCL</td>
<td>ORR 75% CR 66%</td>
</tr>
<tr>
<td>#998</td>
<td>Kite</td>
<td>CAR CD19 CD28 CD3ζ retrovirus</td>
<td>PMBCL, FL</td>
<td>ORR 100%</td>
</tr>
<tr>
<td>LBA-6</td>
<td>Kite</td>
<td>CAR CD19 CD28 CD3ζ retrovirus</td>
<td>DLBCL</td>
<td>ORR 76% CR 47%</td>
</tr>
</tbody>
</table>

- **ORR**: 50 – 100%
- **CR**: ≈ 30 – 65%
CD19-CAR T cells in MM

Efficacy

ORR 80%

Study Design

Eligibility Criteria
- Multiple Myeloma
- Progression within one year of prior ASCT
- Age <70
- Fit for 2nd ASCT

Primary Endpoints
- Safety (CRS, neurotoxicity)
- Feasibility (manufacturing success)

Secondary Endpoints
- CTL019 engraftment and B cell aplasia
- Day 42 and day 100 response
- Progression-free survival (vs. last ASCT)
- Correlation of response to CD19 expression

Salvage
- High-dose Melphalan + Auto-SCT
- CTL019 5 x 10^7 cells
- 12-14 DAYS
- FOLLOW FOR PFS

Day 100 Response

- VGPR 01
- PD 02
- VGPR 03
- VGPR 05
- VGPR 06
- VGPR 07
- PR 08
- PD 09
- PR 10
- VGPR 12

Days post-ASCT

ASCT #1

ASCT + CTL019
<table>
<thead>
<tr>
<th>Patient</th>
<th>Myeloma type</th>
<th>CAR-BCMA cell dose (T cells/kg)</th>
<th>Response (duration in weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>k light chain only</td>
<td>0.3x10⁶</td>
<td>PR (2)</td>
</tr>
<tr>
<td>2</td>
<td>IgA λ</td>
<td>0.3x10⁶</td>
<td>SD (6)</td>
</tr>
<tr>
<td>3</td>
<td>k light chain only</td>
<td>0.3x10⁶</td>
<td>SD (6)</td>
</tr>
<tr>
<td>4</td>
<td>λ light chain only</td>
<td>1x10⁶</td>
<td>SD (10)</td>
</tr>
<tr>
<td>5</td>
<td>IgG k</td>
<td>1x10⁶</td>
<td>SD (4)</td>
</tr>
<tr>
<td>6</td>
<td>IgG λ</td>
<td>1x10⁶</td>
<td>SD (2)</td>
</tr>
<tr>
<td>7</td>
<td>IgG λ</td>
<td>3x10⁶</td>
<td>SD (6)</td>
</tr>
<tr>
<td>8</td>
<td>k light chain only</td>
<td>3x10⁶</td>
<td>VGPR (8)</td>
</tr>
<tr>
<td>9</td>
<td>k light chain only</td>
<td>3x10⁶</td>
<td>SD (10+)</td>
</tr>
<tr>
<td>10</td>
<td>IgA k</td>
<td>9x10⁶</td>
<td>Stringent CR (6+)</td>
</tr>
<tr>
<td>11</td>
<td>IgG λ</td>
<td>9x10⁶</td>
<td>PR (6+)</td>
</tr>
<tr>
<td>12</td>
<td>IgA λ</td>
<td>3x10⁶</td>
<td>SD (2)</td>
</tr>
</tbody>
</table>

BCMA-CAR T cells in MM – UPenn experience

Cohen et al. ASH 2016 Abstract 1147

Study design

- **Cohort 1**
 - 1 - 5 x 10^8 CAR+ T cells (n=3-6)
 - Up to n=9

- **Cohort 2**
 - Cytok 1.5 g/m² + 1 - 5 x 10^7 CAR+ T cells (n=3-6)
 - Up to n=9

- **Cohort 3**
 - Cytok 1.5 g/m² + 1 - 5 x 10^8 CAR+ T cells (n=3-6)
 - Up to n=9

Clinical responses

ORR: 44%

<table>
<thead>
<tr>
<th>Pt</th>
<th>BM PC%</th>
<th>Cytogenetics</th>
<th>CART dose received (% of planned)</th>
<th>CRS grade</th>
<th>Time to 1st response (days)</th>
<th>Best Heme response</th>
<th>PFS (mos.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>70</td>
<td>+11 -17p</td>
<td>2 x 10e8 (40%)</td>
<td>3 (toci)</td>
<td>14</td>
<td>sCR*</td>
<td>12+</td>
</tr>
<tr>
<td>02</td>
<td>60</td>
<td>+1q +4p -17p</td>
<td>5 x 10e8 (100%)</td>
<td>1</td>
<td>14</td>
<td>MR</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>95</td>
<td>t(4;14) -16q</td>
<td>2 x 10e8 (40%)</td>
<td>3 (toci)</td>
<td>15</td>
<td>VGPR*</td>
<td>5</td>
</tr>
<tr>
<td>09</td>
<td>15</td>
<td>t(11;14)-16q</td>
<td>5 x 10e8 (100%)</td>
<td>2</td>
<td>-</td>
<td>SD</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>+1q +4p -17p</td>
<td>1.8 x 10e8 (100%)</td>
<td>-</td>
<td>-</td>
<td>PD</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>t(4;14)-16q</td>
<td>5 x 10e8 (100%)</td>
<td>2</td>
<td>25</td>
<td>MR</td>
<td>2.5</td>
</tr>
<tr>
<td>07</td>
<td>15</td>
<td>+1q, +11, -14, -16</td>
<td>5 x 10e8 (100%)</td>
<td>2</td>
<td>14</td>
<td>uPR**</td>
<td>1.5</td>
</tr>
<tr>
<td>08</td>
<td>80</td>
<td>-1p +1q, -4 -17p</td>
<td>5 x 10e8 (100%)</td>
<td>4 (toci)</td>
<td>-</td>
<td>PD</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>+1q, t(11;14)</td>
<td>5 x 10e8 (100%)</td>
<td>2 (toci)</td>
<td>14</td>
<td>VGPR*</td>
<td>2+</td>
</tr>
</tbody>
</table>

Median number of prior lines: 9 (4 – 11)

- 89% refractory to bortezomib, pomalidomide, carfilzomib.
- 78% refractory to Lenalidomide.
- 44% refractory to Dara.

Safety:

- 89% CRS (grade 3-4: 33%)
- Grade 4 PRES Sd
Safety concerns regarding CAR T cell therapy

- CRS
 - 40-100%
 - (severe ≈ 20-30%)
- Allergic reactions
- Off target effects
- Neurologic toxicities
- GVHD
Important Considerations

Target selection
- CAR design
- Optimal dose and conditioning treatment

Patient selection
- Pre or post-allogeneic stem cell transplant
- Manage of toxicities
- Relapse
Activating tumor specific immunity: Vaccines

- Direct targeting of surface tumor antigens
 - Monoclonal antibodies

- Boosting immune effectors:
 - Adoptive cell therapy

- Activating tumor specific immunity:
 - Vaccins

- Overcoming inhibitory immune suppression:
 - Immunomodulators: IMIDs, Checkpoint inh
Dendritic cell vaccines in Multiple Myeloma

- Vaccination combining different **antigen formats and adjuvants** has been investigated in MM (Rosenblatt et al., 2013),

- but active vaccine strategies are hampered by the **insufficient numbers of induced T cells**, their **poor homing to tumor sites**, and the **immunosuppressive tumor microenvironment**.

- Two separate vaccinations approaches: peptide-based (NY-ESO-1, MAGE-AE, WT-1, XBP-1) and dendritic cell fused vaccines (**broad spectrum of MM antigens are presented in the context of dendritic cell mediated costimulation**).

- **Phase I**: RRMM. n=16 patients. Median of prior lines: 4. Well tolerated.

- **ORR**: 11/16: **Stable disease**. Several patients with SD lasting for 12 to 41 months.

- **Phase II** trial in the context of ASCT: CR/VGPR rate 78% early after ASCT. 24% of patients that improve responses.

Checkpoint inhibitors: Overcoming tumor immune suppression

Direct targeting of surface tumor antigens

- Monoclonal antibodies

Activating tumor specific immunity:

- Vaccins

Boosting immune effectors:

- Adoptive cell therapy

Overcoming inhibitory immune suppression:

- Immunomodulators: IMIDs, Checkpoint inh
Immune Checkpoints

Press the gas pedal Release the brakes

PD-1: Releasing the brakes

PD-1 (Programmed death receptor 1)

- Surface of **ACTIVATED T-cells**.
- **Ligands: PD-L1 & PD-L2**, are expressed on the surface of **APC** and **Tumor cells**.
- **Binding** of PD-L1 or PD-L2 to PD-1 induces **INHIBITION** of T-cell
- **Limit the activity of activated T-cells**

- Cancer cells exploit the PD-1 pathway to create an immunosuppressive milieu\(^1,2,3\).

- Upregulation of PD-L1 expression levels has been described in: melanoma (40-100%), NSCLC (35-95%), MM (93%)\(^4,5\), and linked to poor clinical outcomes\(^4,5\).

- TILs have been shown to express significantly higher levels of PD-1\(^6\).

- The tumor microenvironment secrete proinflammatory cytokines (IFNγ) that upregulate PD-1 on TILs\(^6\).

Role of PD-1 inhibitors in hematological malignancies

NIVOLUMAB SINGLE AGENT
(Checkmate 039)

- DLBCL: 36% ORR
- Follicular lymphoma: 40% ORR
- Mycosis Fungoides: 15%
- Peripheral T cell lymphoma: 40%

- **Hodgkin disease (n=23):**
 - 78% prior ASCT
 - 78% relapsed after Brentuximab
 - 87% > 3 prior lines.
 - PFS at 24 weeks: 86%
 - ORR 87% with 22% of CR.

- **In MM: 67% SD**

PEMBROLIZUMAB SINGLE AGENT *(KEYNOTE-013)*

- MDS, HL, RRMM and NHL.

Several trials in combination are ongoing

Lesokhin et al. JCO 2016
Clinical differences in responses reflect biological differences in the tumor cell

Hodgking Lymphoma

Characterized by high PD-L1 expression and high responsiveness to checkpoint blockade

Non-Hodgkin Lymphoma

A diverse group of tumors, characterized by a variable PD-L1 expression relative to HL

Modified from P Armand, ASH 2016
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.
Checkmate-205B: Nivolumab HL after failure of BV or ASCT

Responses

- All but 1 responder had a reduction of ≥50% from baseline in tumor burden

7 CR
55 PR
18 NR or EE

Median number of prior lines: 4
100% prior ASCT and prior BV and RR cHL
Refractory to BV: 54%

N=80

ORR: 76%
Checkmate-205: Nivolumab HL after failure of BV or ASCT

PFS and OS

- Nivo + Brentuximab: ORR 90%, CR 62% (Herrera AF, et al. ASH 2016)
Pembrolizumab in RR HL after BV failure
Response rate and DOR:

Similar results with Pembrolizumab

Armand et al; J Clin Oncol 2016
Checkpoint Blockade in NHL (Nivolumab)

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>n</th>
<th>ORR</th>
<th>Median Follow-up in weeks</th>
<th>Median Response Duration in weeks</th>
<th>Ongoing Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLBCL</td>
<td>11</td>
<td>4 (36%)</td>
<td>23</td>
<td>22 (6, 77+)</td>
<td>1 (25%)</td>
</tr>
<tr>
<td>Follicular NHL</td>
<td>10</td>
<td>4 (40%)</td>
<td>91</td>
<td>NR (27+, 82+)</td>
<td>3 (75%)</td>
</tr>
<tr>
<td>CTCL/MF</td>
<td>13</td>
<td>2 (15%)</td>
<td>43</td>
<td>NR (24+, 50+)</td>
<td>2 (100%)</td>
</tr>
<tr>
<td>PTCL</td>
<td>5</td>
<td>2 (40%)</td>
<td>31</td>
<td>NR (11, 79+)</td>
<td>1 (50%)</td>
</tr>
</tbody>
</table>

Other combinations:
- R + pidilizumab (R sens pts): ORR 66% / CR 52%
- R + 4-1BB (R / R pts): ORR 21%
Role of PD-1 inhibitors in Multiple Myeloma

- PD-L1 is commonly present (although at low levels)¹ vs only 25% of patients².

PD-L1 expression across all disease stages

Increase PD-1 among Tcells of MRD/RR pts.

Treatment with PD-1 inhibitors in a MM animal model induced prolonged survival.

Lenalidomide reduces PD1 and PD-L1 expression on RR-MM cells

The checkpoint blockade combined with Lenalidomide:
- Higher cytokine production in effector cells in MM Bone Marrow
- Higher cytotoxicity against MM cells

Lenalidomide with Checkpoint Blockade Reverses MDSC Induced Immune Suppression in MM

Pembrolizumab treatment in RRMM

<table>
<thead>
<tr>
<th>Study design</th>
<th>KEYNOTE-023 (Ph I): PEMBRO-LEN-DEX¹</th>
<th>Ph I/II: PEMBRO – POMA –DEX²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PEMBRO 200mg/2QW LEN 25mg 1-21</td>
<td>PEBRO 200mg/2QW POMA 4mg 1-21</td>
</tr>
<tr>
<td></td>
<td>DEX 40mg weekly</td>
<td>DEX 40mg weekly</td>
</tr>
</tbody>
</table>

| Patient population | - N= 62
| | > 2 prior lines RRMM
| | PI & IMID exposure |
| | - N= 38
| | >2 prior lines RRMM
| | PI & IMID exposure |

| Refractory status | 75% Len-refractory
| | 63% Bort-refractory
| | 50% double/triple/cuadruple refractory |
| | 89% Len-refractory
| | 82% Bort-refractory
| | 70% double-refractory |

| ORR | Efficacy populat. (n= 40): 50% Len-refr (n=29): 38% |
| | Total (n=45): ORR 65% ≥VGPR: 29% Double refractory (n=32): 68% Median PFS 17.4m |

| Safety | AEs consistent with individual drug safety profiles for approved indications
| | IRAEs: no pneumonitis. No colitis. 65% AEs grade 3-5, 33% neutropenia |
| | Good safety profile
| | irAEs: 38%
| | Pneumonitis: 14% |

¹San Miguel JF, ASH 2015 oral presentation 505; Mateos MV, ASCO 2016 ²Badros A, ASH 2016, abstract 490
Final remarks

• Clinical success of checkpoint inhibition especially in solid tumors has *relight the interest in immunotherapy against cancer* and this field is now moving forward very rapidly.

• Nevertheless there are still some open questions:

 - It is important to define *target populations* that will benefit most from specific immunotherapeutic strategies as well as

 - *Biomarkers to predict response* to certain treatments such as checkpoint inhibitors, for example.

 - Therapeutic strategies only targeting one pathway are often ineffective or short-lived when treating cancer patients. On this basis, *combinatorial strategies using immunotherapy as a backbone* might revolutionize cancer treatment and hopefully improve patient outcomes.
Thank you for your attention