Prostate cancer pathology—
diagnosis and prognosis

Dr Puay Hoon Tan
Division of Pathology
Singapore General Hospital
Prostate cancer (acinar adenocarcinoma)

- Invasive carcinoma composed of neoplastic epithelial cells with secretory differentiation, arranged in a variety of histomorphological patterns, including glands, cords, single cells, sheets.
- Basal cells are absent.
WHO Classification of Tumours of the Urinary System and Male Genital Organs

Edited by Holger Moch, Peter A. Humphrey, Thomas M. Ulbright, Victor E. Reuter

2016
WHO classification of tumours of the prostate

<table>
<thead>
<tr>
<th>Epithelial Tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glandular neoplasms</td>
<td></td>
</tr>
<tr>
<td>Acinar adenocarcinoma</td>
<td>8140/3</td>
</tr>
<tr>
<td>Atrophic pseudohyperplastic</td>
<td>8490/3</td>
</tr>
<tr>
<td>Microcystic</td>
<td>8490/3</td>
</tr>
<tr>
<td>Foamy gland</td>
<td>8490/3</td>
</tr>
<tr>
<td>Mucinous (colloid)</td>
<td>8490/3</td>
</tr>
<tr>
<td>Signet ring</td>
<td>8490/3</td>
</tr>
<tr>
<td>Pleomorphic giant cell adenocarcinoma</td>
<td>8572/3</td>
</tr>
<tr>
<td>Prostatic intraepithelial neoplasia (PIN), high grade</td>
<td>8148/3</td>
</tr>
<tr>
<td>Intraductal carcinoma NOS</td>
<td>8500/3</td>
</tr>
<tr>
<td>Ductal adenocarcinoma</td>
<td>8500/3</td>
</tr>
<tr>
<td>Cillitum</td>
<td>8201/3</td>
</tr>
<tr>
<td>Papillary</td>
<td>8260/3</td>
</tr>
<tr>
<td>Solid</td>
<td>8230/3</td>
</tr>
<tr>
<td>Urothelial carcinoma</td>
<td>8110/3</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>8070/3</td>
</tr>
<tr>
<td>Basal cell carcinoma of the prostate</td>
<td>8147/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuroendocrine tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma with neuroendocrine differentiation</td>
<td>8574/3</td>
</tr>
<tr>
<td>Well differentiated neuroendocrine tumour</td>
<td>8240/3</td>
</tr>
<tr>
<td>Small cell neuroendocrine carcinoma</td>
<td>8041/3</td>
</tr>
<tr>
<td>Large cell neuroendocrine carcinoma</td>
<td>8013/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesenchymal Tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromal tumour of uncertain malignant potential</td>
<td>8935/1</td>
</tr>
<tr>
<td>Stromal sarcoma</td>
<td>8935/1</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>8890/3</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>8890/3</td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>8890/3</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>9120/3</td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td>9040/3</td>
</tr>
<tr>
<td>Inflammatory myofibroblastic tumour</td>
<td>8825/1</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>9180/3</td>
</tr>
<tr>
<td>Undifferentiated pleomorphic sarcoma</td>
<td>8825/1</td>
</tr>
<tr>
<td>Solitary fibrous tumour</td>
<td>8851/3</td>
</tr>
<tr>
<td>Solitary fibrous tumour, malignant</td>
<td>8815/3</td>
</tr>
<tr>
<td>Haemangioendothelioma</td>
<td>9120/3</td>
</tr>
<tr>
<td>Granular cell tumour</td>
<td>9936/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Haematolymphoid tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse large B-cell lymphoma</td>
<td>9682/3</td>
</tr>
<tr>
<td>Chronic lymphocytic leukaemia / small lymphocytic lymphoma</td>
<td>9683/3</td>
</tr>
<tr>
<td>Follicular lymphoma</td>
<td>9680/3</td>
</tr>
<tr>
<td>Mantle cell lymphoma</td>
<td>9673/3</td>
</tr>
<tr>
<td>Acute myeloid leukaemia</td>
<td>9661/3</td>
</tr>
<tr>
<td>B lymphoblastic leukaemia / lymphoma</td>
<td>9611/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystadenoma</td>
<td>8440/0</td>
</tr>
<tr>
<td>Nephroblastoma</td>
<td>8960/3</td>
</tr>
<tr>
<td>Rhabdoid tumour</td>
<td>8960/3</td>
</tr>
<tr>
<td>Germ cell tumours</td>
<td>8310/3</td>
</tr>
<tr>
<td>Clear cell adenocarcinoma</td>
<td>8310/3</td>
</tr>
<tr>
<td>Melanoma</td>
<td>8720/3</td>
</tr>
<tr>
<td>Parangangioma</td>
<td>8959/1</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>9650/3</td>
</tr>
</tbody>
</table>

Metastatic Tumours

<table>
<thead>
<tr>
<th>Tumours of the seminal vesicles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial tumours</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>8140/3</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>8070/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixed epithelial and stromal tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystadenoma</td>
<td>8440/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesenchymal Tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leiomyoma</td>
<td>8890/3</td>
</tr>
<tr>
<td>Schwannoma</td>
<td>9560/3</td>
</tr>
<tr>
<td>Malignant-type myofibroblastoma</td>
<td>8952/1</td>
</tr>
<tr>
<td>Gastrointestinal stromal tumour, NOS</td>
<td>8952/1</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td>8890/3</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>9120/3</td>
</tr>
<tr>
<td>Liposarcoma</td>
<td>8850/3</td>
</tr>
<tr>
<td>Solitary fibrous tumour</td>
<td>8815/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous Tumours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Choriocarcinoma</td>
<td>9100/3</td>
</tr>
<tr>
<td>Seminoma</td>
<td>9061/3</td>
</tr>
<tr>
<td>Well differentiated neuroendocrine tumour / Carcinoid tumour</td>
<td>8240/3</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>9958/3</td>
</tr>
<tr>
<td>Ewing sarcoma</td>
<td>9364/3</td>
</tr>
</tbody>
</table>

Metastatic Tumours

The morphology codes are from the International Classification of Diseases for Oncology (ICD-O-3) [9734]. Behaviour is coded 0 for benign tumours; 1 for well-differentiated, borderline, or uncertain behaviour; 2 for carcinoma in situ; and grade 3 for malignant neoplasms. All or grade 3. The classification is modified from the previous WHO classification [7564], taking this account changes in our understanding of these lesions.

* These new codes were approved by the IARC/WHO Committee for ICD-O.
Acinar adenocarcinoma
Scope

- Prostate cancer ~
 - Histopathology
 - Grading
- Diagnosis and prognosis ~
 - Core biopsies
 - Transurethral resections
 - Radical prostatectomies
Prostate

Benign acini

Acinar adenocarcinoma

Malignant acini
Prostate Cancer: Gleason grade

- Developed by Dr Donald Gleason in 1966-1974
- Based on glandular pattern of tumour identified at low magnification (*architecture*)
- Sum of the 2 most common grade patterns
Prostate Cancer:
Gleason grade

- In tumours with 2 distinct histologic patterns, number of observed deaths fell between that expected based on the primary (most common) & that of the secondary (2nd most common) patterns.
- Combined Gleason grade = Gleason score (sum).
- Primary Gleason pattern + secondary Gleason pattern = Gleason score.
Prostate Cancer: Gleason grade

- Gleason score of 2 to 4: low grade.
- Gleason score of 5 to 7*: intermediate grade.
- Gleason score of 8 to 10: high grade.

* Gleason score 7 tumours more aggressive than Gleason 5 to 6.
Convened because:

- Evolution of medical practice and changes in diagnosis of prostate cancer since 1966.
 - Advent of prostate cancer screening.
 - Availability of serum PSA.
 - Use of thin biopsy needles, allowing wider sampling of the prostate.
 - Increasing numbers of radical prostatectomies.
 - Application of immunohistochemistry.
 - Recognition of variants of prostate cancer.
Further modification of Gleason system ~

- Deficiencies in the original Gleason system have impacted on patient care.
- Gleason score 7 can be derived from Gleason 3+4 or Gleason 4+3.
- Lowest combined grade assigned is 6 on a scale of 2 to 10, leading to patients incorrectly assuming that they have a more aggressive cancer when they have good prognostic disease.
Prostate Cancer: Grade groups

- **Grade group 1** ~ Gleason score ≤ 6
 Only individual discrete well formed glands.

- **Grade group 2** ~ Gleason score 3+4=7
 Predominantly well-formed glands with lesser component of poorly formed/fused/cribriform glands.

- **Grade group 3** ~ Gleason score 4+3=7
 Predominantly poorly formed/fused/cribriform glands with lesser component of well-formed glands.

- **Grade group 4** ~ Gleason score 4+4=8; 3+5=8; 5+3=8
 Poorly formed/fused/cribriform glands.
 Predominantly well-formed glands and lesser component lacking glands.
 Predominantly lacking glands and lesser component of well-formed glands.

- **Grade group 5** ~ Gleason scores 9-10
 Lack gland formation (or with necrosis) with or without poorly formed/fused/cribriform glands.
Core biopsy

Radical prostatectomy
Prostate cancer: Adenocarcinoma variants

- Prostatic duct adenocarcinoma
 - Periurethral prostatic ducts, exophytic lesion into urethra, around verumontanum
 - Aggressive, less responsive to hormones
- Mucinous adenocarcinoma
 - Aggressive, bone metastases, advanced disease
- Neuroendocrine differentiation
 - Small cell carcinoma: aggressive
Prostate cancer: Adenocarcinoma variants

- Signet ring adenocarcinoma
- Pseudohyperplastic adenocarcinoma
- Atrophic adenocarcinoma
- Foamy gland adenocarcinoma
Pathologic evaluation of prostate cancer

• Types of prostatic surgical/biopsy specimens:
 – Needle biopsies (TRUS, transperineal).
 – Transurethral resection (TURP).
 – Radical prostatectomy.
Prostate Needle Biopsy:
10 core method, labelled cores
Prostate Needle Biopsy: Core Localisation
Pathologic handling of prostatic needle biopsies

• Location of positive biopsy cores:
 – Predictive of adverse findings at radical prostatectomy.
 – Cancer in multiple biopsy cores predicts multifocal cancer.
Pathologic handling of prostatic needle biopsies

• Location of biopsy cores:
 – Rebiopsy techniques following a diagnosis of atypical glands suspicious for cancer.
 – Increased number of rebiopsy cores from the original and adjacent sites of initial atypical biopsy.
 – Cancer found on rebiopsy in the same site as the initial atypical biopsy in 48% of men (Allen et al. Urology 1998;52:803-807).
1st biopsy

Atypical glands suspicious of cancer in core 9

Repeat biopsy

Cancer in core 10

34βE12
Pathognomonic features of prostatic adenocarcinoma

- Perineural invasion
- Mucinous fibroplasia (collagenous micronodules)
- Glomerulation
Infiltrative architecture
Prominent nucleoli
Luminal crystalloid
Luminal mucin
Luminal eosinophilic secretions
Constellation of histologic features of prostatic adenocarcinoma
Prostate needle biopsies: diagnosis of limited cancer

Use of immunohistochemistry

- High molecular weight cytokeratin
 - 34βE12.
 - Expressed by basal cells in benign glands.
 - Basal cells are absent in prostatic acinar adenocarcinoma.
- p63
 - Nuclear protein encoded by 3q27-29.
 - Regulates growth & development of epithelium of skin, cervix, breast & urogenital tract.
 - Expressed by prostatic basal cells.
- Other basal cell markers
 - CK5/6, CK14.
Basal cells in benign glands:

High molecular weight keratin, 34βE12
Basal cells in benign glands:
p63 immunohistochemistry

H/E p63
Prostate needle biopsies: *diagnosis of limited cancer*

- **α-methyl-CoA Racemase (AMACR)**
 - Cytoplasmic protein also known as P504S
 - Overexpressed in prostatic adenocarcinoma.
 - > 80% of prostatic adenocarcinomas labelled with antibody against racemase.
 - Not specific, found in:
 - Nodular hyperplasia (12%).
 - Atrophic glands.
 - High grade PIN (>90%).
 - Adenosis.
 - Confirmatory immunostain for prostate cancer in conjunction with light microscopy and basal cell marker.
Prostate needle biopsies: *histologic parameters of importance*

- **Gleason score.**
- **Tumour quantum:**
 - No. of positive cores.
 - Total mm among all cores.
 - %age of each core with cancer.
 - Total % of cancer in entire specimen.
 - Fraction of positive cores.
- **Perineural invasion:**
 - Correlation with extraprostatic extension on RP.
 - Higher incidence of disease progression following RT and RP.
- **Extraprostatic extension**
Prostate needle biopsies:

grading of cancer

- **Gleason score 2 to 4?**

Gleason Score 2–4 Adenocarcinoma of the Prostate on Needle Biopsy

A Diagnosis That Should Not Be Made

(Am J Surg Pathol 2000; 24: 477-8)

Jonathan I. Epstein, M.D.
Transurethral resection of prostate

- Incidental discovery of prostate cancer in 8% to 10% cases.
- Transition zone or large peripheral zone cancers.
- Sampling of transurethral resection specimens:
 - Initial random submission of tissue in 8 cassettes:
 - Identifies almost all T1b cancers & about 90% of T1a cancers.
 - Submission of all tissue in younger men (<65 yrs).
 - Remaining tissue submitted if T1a cancer found in the initial 8 cassettes.
Transurethral resection of prostate

- **T1a cancer in younger men:**
 - increased progression risk with long-term follow-up.
 - definitive therapy an option.

- **Submission of remaining tissue if T1a cancer found:**
 - potential of upstaging based on high-grade cancer being found in the additionally submitted tissue.

• **T1a:**
 - tumour occupies \(\leq 5\% \) of the specimen
 - Gleason sum < 7

• **T1b:**
 - higher volume OR
 - higher grade tumour
Radical Prostatectomy

• Complete vs partial sampling:
 – 12% pathologists sample entire prostate gland.
• Whole mount vs routine sections.
• Sections required:
 – Apex (distal margin)
 – Base (proximal margin)
 – Seminal vesicles (base)
 – Vas deferens
 – Rest of prostate gland
Handling of prostatic surgical specimens:
Radical Prostatectomy

• Whole mount sections:
 – Ease of mapping of cancer foci.
 – Aesthetically pleasing.
 – Suitable for teaching and publications.
 – Correlation with imaging techniques.
 – Disadvantages:
 • Thick sections
 • Technically demanding
 • Storage problems
Radical prostatectomy: whole mount sections with cancer foci mapping
Radical Prostatectomy

• Detailed mapping of prostate cancer foci:
 – Biopsies targeted to areas of highest tumour concentration.
 – Optimise locally directed therapies for prostate cancer.

• Correlation with radiology.
Radical Prostatectomy:
Pathologic parameters

- Gleason score.
- Extraprostatic extension.
- Seminal vesicle invasion.
- Lymph node metastases.
- Surgical margin status.
- Perineural invasion.
- Tumour volume.
- Lymphovascular invasion.
Radical Prostatectomy:
extraprostatic extension

- Tumour extends beyond the outer condensed smooth muscle of the prostate.
- Focal vs established:
 - Focal: only a few glands outside the prostate.
 - Established: non-focal.
Radical Prostatectomy: *seminal vesicle invasion*

- Cancer invades muscle coat of the seminal vesicle.
- Significant prognostic indicator.
Radical Prostatectomy: *lymph node metastases*

- Uniformly poor prognosis in presence of nodal metastases.
- 1% to 2% of patients undergoing RP.
Radical Prostatectomy: surgical margin status

- Positive surgical margins an important prognostic parameter following surgery.
- Equivocal, focal or extensive.
- Site of positive surgical margin is often the site of EPE.
- Positive surgical margin can result from incision into the gland without EPE.
Positive surgical margins in a radical prostatectomy
Radical Prostatectomy:
perineural invasion

- Found in 75% to 84% of RP.
- Not independently prognostic.
- Largest diameter of nerve with perineural invasion independently related to an increased likelihood of biochemical failure after RP.

(Maru et al. Hum Pathol 2001; 32: 828-33)
Radical Prostatectomy: *tumour volume*

- Total tumour volume is an important predictor of prognosis.
- Not independently prognostic when adjusted for pathologic stage, grade and surgical margins.
Radical Prostatectomy: lymphovascular invasion

- Important in univariate analysis.
- Independent prognostic utility is questionable.
ISUP consensus conference on handling and staging of radical prostatectomy specimens

• WG1: Specimen handling *(Mod Pathol 2011; 24: 6-15).*
• WG2: T2 substaging and prostate cancer volume *(Mod Pathol 2011; 24: 16-25).*
• WG3: Extraprostatic extension, lymphovascular invasion and locally advanced disease *(Mod Pathol 2011; 24: 26-38).*
• WG4: Seminal vesicles and lymph nodes *(Mod Pathol 2011; 24: 39-47).*
• WG5: Surgical margins *(Mod Pathol 2011; 24: 48-57).*
Prostate Cancer: Pathologic T Stage

T1a : ≤5% TURP
T1b : >5% TURP
T1c : cancer on needle biopsy
T2a : ≤half a lobe
T2b : >half a lobe
T2c : both lobes
T3a : extraprostatic extension
T3b : seminal vesicle invasion
Pathologic evaluation of prostate cancer

• Accurate reporting of pathologic parameters of prognostic importance.
• Familiarity with histologic features of cancer.
• Awareness of pitfalls and benign mimics.
• Use of adjunctive diagnostic tools eg. immunohistochemistry.
Thank you